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ABSTRACT

The Avco Data Analysis and Prediction Techniques (ADAPT), (a series of

empirical data analysis programs based on the concept that pattern recognition

and regression should be preceded by a reduction of dimensiona]ity based on

the Karhunen-Loeve Expansion), were applied to two years of historical data

recorded on the Kennedy Space Flight Center Central Heating Plant. Detection

laws capable of detecting failures in the heat plant up to three days in advance

of the occurrence of the failure were successfully derived and demonstrated.

The projected performance of these algorithms yielded a detection probability

of 90% with false alarm rates o£ the order o£ 1 per year £or a sample rate o£
1 per day with each detection followed by 3 hourly samplings. This performance
was verified on 173 independent test cases. The program also demonstrated dia-

gnostic algorithms and the ability to predict the time to failure to approximately
plus or minus 8 hours up to three days in advance of the failure.

The ADAPT programs produce simple algorithms which have a unique possibil-

ity of a relatively low cost updating procedure. The algorithms have been

implemented on general purpose computers at Kennedy Space Flight Center and
will be tested against current data.

The study concludes that the successful demonstration of the detection and

classification algorithms demonstrates the feasibility of a new maintenance

concept based on the demand rather than a preset schedule. This approach

will save cost and avoid the possibility of introducing failures as a part of the

inspection procedure. This maintenance concept should have applicability to a

large variety of industrial and government facilities as well as the maintenance

of complex systems such as spacecraft and other large complex systems.
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I. 0 INTRODUCTION

This report presents the results of a study program which demonstrated the

feasibility of a demand preventive maintenance (DPM) approach to mainten-

ance of the KSC central heat plant. This feasibility was demonstrated by using

the Avco Data Analysis and Prediction Techniques (ADAPT) to derive simple

algorithms for l) detecting incipient failures of the central heat plant, Z) diagno-

sing expected cause of this incipient failure, and 3) determining the time remain-

ing to the occurrence of this failure. Demonstration of the feasibility of provid-

ing these algorithms leads directly to the feasibility of utilizing a demand

preventive maintenance scheme as a replacement or adjunct to the present

schedule preventive maintenance (PM) scheme.

The objective of the conventional scheduled preventive maintenance scheme is

to avoid failures by scheduling the maintenance of various elements of a complex

system in such a way that each element is inspected and/or repaired prior to the

occurrence of a failure. The DPM approach replaces this concept or at least

complements it with the idea that diagnostic measurements will be taken on the

system and used to predict an incipient failure before it occurs. When this

incipient failure has been detected, the corrective action and maintenance re-

quired to prevent this failure from occurring will be performed. Thus the

availability of ADAPT detection algorithms allows preventive maintenance to

be performed on demand rather than on a scheduled basis.

This report presents the derivation 0f, performance projections for, and test

verification that simple detection algorithms can be derived which would detect

approximately 900]0 of the failures occurring in the IKSC heat plant with a false

alarm rate of approximately one per year for sample rate of one per day with

each detection followed by three hourly samplings. The potential to derive de-

tection algorithms with even greater performance is demonstrated; however,

the requirements for maintenance on the KSC central heat plant would not justify

the additional effort required to derive, verify, and implement the more com-

plex sequence of algorithms required to achieve this gain in performance.

The demonstration algorithm for detecting incipient failures was developed and

its expected performance projected from the ADAPT analysis of the learning

data. This performance was then verified by testing 173 independent test cases.

Algorithms were also developed and their performance projected to demonstrate

the diagnosis of failures in the atomizing steam boiler and in boiler No. 1. An

algorithm was developed and its performance projected for predicting the number

of hours remaining until failure of the atomizing steam boiler.

The application of these algorithms to the KSC central heat plant has been

illustrated by two scenarios. The first scenario illustrates how one would
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apply the ADAPT maintenance algorithms in a manual mode. The maintenance

algorithms derived can be utilized in this manual mode without any modifications

to the present KSC heat plant and its instrumentation by using existing computers

at KSC. The second scenario shows how these same algorithms can be used in

conjunction with an automated data monitoring system to completely automate

the entire diagnosis and analysis of the KSC central heat plant. For this case

the same algorithms can be incorporated in the computer dedicated to the moni-

toring System and the entire DPM progra m implemented in a completed automated

fashion.

The programs required to implement ADAPT algorithms on existing KSC comput-

ers have been developed and implemented on these computers by KSC personnel.

It is also possible to implement the programs required to make use of the opti-

mum representation to update the algorithms on existing KSC computers. This

would allow KSC to update the algorithms to account for minor changes in the

system.

The next section of this report will summarize the results and recommendations

resulting from this study. This will be followed by a description of the KSC

central heat plant and the scenarios illustrating the application of these algorithms

to the DPM of the KSC central heat plant. Section 4 reviews the ADAPT programs
and approach'to'empirical data analysis. The derivation and evaluation of the

detection, diagnostic and time to failure algorithms are presented in Sections 5,

6 and 7 respectively.
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2.0 RESULTS AND RECOMMENDATIONS

The major result of this study was the demonstration of the feasibility of develop-

ing a predictive maintenance scheme based on the use of ADAPT derived

algorithms for the Kennedy Space Flight Center central heat plant. This system

can be implemented with the central heat plant in its present configuration using

a manual mode of data collection, transportation and submission to existing

general purpose computers, or the algorithms may be incorporated into a com-

pletely automated data retrieval and logging system. In this latter system the

entire predictive preventive maintenance scheme can be incorporated in a

maintenance computer which would automate all of the functions required to

furnish the maintenance instructions. The requirements to implement either

system, assuming that in the latter case one is already procuring the computer

and data collection system for the automated data gathering and recording system,

is the development of the complete set of diagnostic algorithms and a small

effort to develop the software and logic required to implement and interpret the

detection in diagnostic algorithms.

The feasibility of using a demand preventive maintenance system rests pri-

marily on the ability to detect incipient failure such than maintenance may be

performed on demand, that is when the system is just about to fail rather than

on a scheduled basis. The implementation of this demand preventive mainten-

ance system is considerably simplified if one can also diagnose which component

is about to fail such that the maintenance instructions can be specific. Thus the

primary requirement to establishing feasibility was the demonstration of the

feasibility of using the ADAPT programs to derive algorithms to detect incipient

failures of the central heat plant. A secondary requirement was to show the

feasibility of deriving diagnostic algorithms and a tertiary objective was to show

the feasibility of estimating the time of failure once the failure mode had been

diagnosed. Since the detection algorithm is most critical to the feasibility of

implementing the predictive preventive maintenance system, the major effort

was to demonstrate the feasibilibility of the detection algorithm. The first

step was to investigate three different types of detection algorithms. These

three types were universal detection algorithms, algorithms based on sub-

division by types of failures and algorithms based on subdivisions by natural

ADAPT grouping. Exploratory studies were carried out with an initial data

set ranging from 30 to 100 cases. The application of the ADAPT programs to

these data sets resulted in the detection algorithms whose performance are

summarized in Figure Z. 1.

Figure Z. 1 presents the detection probability versus the false alarm rate for

each of the six detection algorithms studied. These performances are based

on projections of the learning data. There are many advantages to multiple

applications of the algorithm prior to initiating corrective maintenance action.

Some of these advantages include less severe requirements on the performance
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of the algorithm and significantly smaller amounts of test data required to

proof test the algorithm. These multiple applications allow one to obtain false

alarm rates of the order of one per year and detection probabilities greater

than 85% for any algorithm whose single application performance exceeds a

detection probability of approximately 9 for a false alarm rate of .3. Since

this performance is adequate for maintenance of the KSC heat plant, it can be

used to separate acceptable from unacceptable detection algorithms.

Applying the above criteria to the results shown in Figure 2.1, we see that all

of the detection algorithms are acceptable from a performance standpoint. The

universal boiler #I detection algorithm has significant advantages over ali of

the other algorithms in terms of ease of application, cost of both the develop-

ment and use of the predictive preventive maintenance system, and the break-in

time required to debug this system. For these reasons the universal boiler #i

detection algorithm was selected as the best algorithm for application to the

KSC central heat plant. It must be emphasized that another algorithm might be

required or more desirable for other applications.

Since the detection algorithm represents the most critical element in the feasi-

bility of the demand preventive maintenance system, further development of

this algorithm was carried out to provide independent test results, verify the

projected performance and demonstrate the ability of the ADAPT programs to

project learning data performance to test cases. The results of these studies

are summarized in Figure Z. 2 as plots of the detection probability versus false

alarm rate for the 20 dimensional boiler #I detection algorithm. Again this

algorithm is not the best performing of the universal detection algorithms;

however, taking all factors into consideration it is the recommended algorithm

for the KSC central heat plant. The solid symbols show the results of applying

this algorithm to 173 independent test cases which were not used in the original

data set. These test cases included considerable additional variation over time

of day as well as day of year relative to the original learning data. In addition

to the testing of these 173 cases, testing was also performed on 15 cases where

boiler #2 was substituted for boiler #I. This algorithm proved to be effective

in diagnosing failures of the boiler #Z configuration. Tests were also performed

on 19 cases which were taken prior to the major changes which were made in

the distribution system early in 1970. These test cases showed that this

algorithm could not account for these major changes in the distribution system.

The details of these tests are presented in section 5.4. In summary, the testing

demonstrated that the ADAPT projections of performance were valid and

therefore the feasibility of deriving an algorithm for detecting incipient failure

of the KSC central heat plant was verified.

The same exploratory analysis used to project the performance of the detection

algorithm was applied to two different diagnostics algorithms. The first was

on algorithms to diagnose boiler #1 failure versus all other failues and the

second was algorithms to diagnose the atomizing boiler versus all other

-4-
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failures. The projected performance for these two algorithms is summarized

in Figure Z. 3 as plots of detection probability versus false alarm rate. Examina-

tion of this figure shows that the performance of these algorithms should be

superior to the performance of any of the detection algorithms. Single applica-

tions of these algorithms will yield detection probabilities in excess of . 96 with

failure rates of one per year. This type of algorithm can only be constructed

for failure modes for which failures have previously occurred. Thus there is

always the possibility that a new type of failure will occur and this specific

diagnostics will not be possible. For this situation it is recommended that the

ADAPT programs capability to provide nearest neighbor analysis and relative

importance information be utilized to provide additional information to assist

in diagnosing the cause of the new type of failure. Algorithms should also be

derived for isolating failures to certain sub-systems of the KSC central heat

plant. In fact, the atomizing steam boiler diagnostic algorithms is actually

such an algorithm since it was developed using several different types of

failures occurring in the atomizing steam boiler subsystem. It is likely that

any failure in the atomizing steam boiler subsystem would be diagnosed even

if it were not identical to the specific failure which was used in the learning

data.

For those cases where experience with a specific type of failure is sufficient

to provide a reasonable number of cases, one might expect to be able to use

the ADAPT parameter estimation capability to estimate the time remaining

until the failure will occur. In order to demonstrate this capability, the

data on the atomizing steam boiler failures were used in the ADAPT program

to derive a time-to-failure algorithm. Figure 2.4 is a plot of the time-to-

failure as estimated by the ADAPT algorithms versus the actual time-to-failure.

Examination of this figure shows that the ADAPT algorithm is able to predict to

within approximately six hours the time-to-failure up to three days in advance

for approximately 70% of the cases.

Tables >.I thru 2.4 present the 20-dlrnenslonil universal detectlon algorithm,

the two diagnostic algorithms and the time-to-failure algorithms which were

derived as a result of this study. Each detection or classification algorithm

consists of two steps: Step i is an equation (i.e. dot product} to compute a number

and Step 2 is the rule for using the number. For a prediction algorithm Step I

provides the number to be predicted. Examination of these tables shows that the

implementation of these algorithms is a simple procedure which if necessary

could be implemented by hand, although it is far more convenient and reliable

to implement these algorithms on a computer. They have already been imple-

mented on the general purpose computers at KSC. Table 2.5 lists the measure-

ments which are associated with each of the index values for the algorithm

presented in Table 2.1 and Table Z. 6 lists each of the measurements which

would be associated with the indices for Tables 2.2 through 2.4.

The availability of these three types of algorithms allows us to {mplement a

demand preventive maintenance system. The recommended procedure for

accomplishing this is illustrated in Figure Z. 5. The heat plant measurements

would be taken and processed through the incipient failure detection algorithm

which was presented in Table 2.1. If this algorithm produced a value greater

than zero, the system is operating normally and no action is required. If this
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algorthm produces a value less than zero, an incipient failure is indicated.
This would initiate further analysis actions. The data would be recorded each
hour for the next three hours and the algorithm repeated. If three confirming
detections were achieved, then the decision would be made that an incipient
failure was to be expected. The data would then be processed through the
diagnostic and time-to-failure algorithms such as those presented in Tables
2. 3 through Z.5. These algorithms would provide the basis upon which
maintenance instructions would be prepared by the maintenance decision logic.
This process could be carried out exactly as described with the present KSC
central heat plan instrumentation by using the current measurements as
recorded in the heating plant log, punching these measurements onto punch
cards and feeding them to an existing general purpose computer at KSC.
Alternativeiy' if the newautomated data collection=and recording system is

obtained, the entire procedure from the recording of the measurements throtl_h

the application of the algorithms and the performing of the maintenance decision

logic can be carried out within the maintenance computer required to control the

data collection.

The tests performed on variations from the learning system including the

substitution of boiler #Z for boiler #i and the use of test cases obtained before

the major changes of early 1970 were incorporated into the distribution system have

shown that the algorithm presented in Table 2. I is insensitive to relatively minor

changes such as the substitution for boiler #Z for boiler #i, but the major

changes associated with the major modifications of the distribution system •

seriously degraded the performance of this algorithm. This indicates that it

will be desirable to have a capability to update the ADAPT algorithms from time

to time. This updating capability also allows one to incorporate new failures

into the learning base as they occur. This can be accomplished as is outlined in

Section 3. In order to do this it is necessary to store certain portions of the

data obtained during the normal processing. A random sampling of the passing

cases is required to keep the good class up to date. It is also desirable to keep

each of the failed cases as a future learning case. Thus, the flow diagram of

Figure 2.5 shows a random sampling of the passing cases and a complete sam-

pling of the failure cases. Again, this can be done manually or with the automated

system.. The key result of this review of the application of the procedure is

that the ADAPT algorithms can be incorporated into a demand preventive

maintance scheme at KSC without any additional hardware procurement in either

its present configuration or in the planned automated data recording configuration.

The successful achievement of detection and diagnostic algorithms required to

implement a demand preventive maintenance scheme on the KSC central

heat plant implies that other base facilities at KSC, other NASA centers and in

industry in general which are made up of a large number of interrelated sub-

systems may be maintained by a demand preventive maintenance technique

such as described here. The success of this technique on this complex but

relatively unsophisticated system also indicates a good prognosis for the applica-

tion of this approach to detecting incipient failures in more sophisticated

-6-



systems such as space shuttle and other spacecraft checkout and post-flight
maintenance.

Careful examination of the ADAPT produced relative importance vector,
provided information useful to improving the scheduled preventive mainten-
ance approach and the design of the system. For example, the times to pre-
ventive maintenance which have positive values in the relative importance
vector are an indication of preventive maintenance which may be being per-
formed too often since the performance of the system is better when one is
a long time away from the preventive maintenance. On the other hand, those
preventive maintenance index values which have negative values are items
which require more preventive maintenance. This phenomena is discussed in
more detail in Section 5.5.

The successful demonstration of the feasibility of developing algorithms for

detecting incipient failure leads to the immediate recommendation that as much

experience as possible should be obtained with practical application of this

algorithm. The best way to achieve this is to start an immediate monitoring of

the present central heating facility by applying the algorithm presented in Table

Z. 1 to this facility on a regular basis. Based on the results obtained in evaluating

the case where boiler #Z is substituted for boiler #I, it is also recommended that

this algorithm be applied to either boiler #I or boiler #Z operating by themselves.

It is also recommended that the effort be initiated to develop the remaining

algorithms, optimize those algorithms and provide the proof testing of the

algorithms required to provide a complete set of algorithms for implementing

the demand preventive maintenance system on the KSC heat plant. The use

of the ADAPT programs to provide a demand preventive maintenance capability

for other base facilities and other spacecraft systems and spacecraft checkout

problems should be implemented. The primary requirement to accomplish this

is the availability of data which can be used as learning data to derive the

required detection and diagnostic algorithms. The results on the KSC central

heat plant provide an extremely high confidence that given a relatively complete

monitoring of most any complex system, the ADAPT programs can derive

algorithms capable of detecting incipient failures and diagnosing the cause of

this failure.
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FIGURE 2.4

COMPARISON OF ESTIMATED AND ACTUAL TIME TO FAILURE FOR THE ATOMIZING

STEAM BOILER
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3.0 APPLICATION OF MAINTENANCE ALGORITHMS TO KSC CENTRAL

HEA T PLANT

Before presenting the details of the development of the maintenance algorithms,

it is necessary to review the details of the KSC central heat plant and how the

maintenance algorithms can be used to assist in the maintenance of this system.

The next section will summarize the KSC heating plant. This will be followed

by the discussion of how the ADAPT derived maintenance algorithms can be

used to improve the maintenance of the current system without any modifications

and then how the same types of maintenance algorithms could be used in con-

junction with an automated data monitoring system to completely automate the

detection and diagnosis of out of tolerance performance of the KSC heating plant.

3. 1 Description of the KSC Heat Plant

Figure 3.1 presents a schematic diagram showing some of the key features of

the KSC central heat plant. Although this figure does not include many of the

components of the system and therefore does not adequately present the com-

plexity of the system, it does illustrate the large amount of redundancy which

exists in this heating system. It will serve as a basis for describing the appli-

cation of a maintenance algorithm. For a detailed analysis of the results, it

will be necessary for the reader to refer to layout drawings of the entire system.

The heat plant is basically composed Of three boilers, any two of which are

sufficient to carry the full load of all three zones. Boilers No. 1 and 2 are

identical, and Boiler No. 3 is a different and smaller boiler. Normal operation

calls for atomizing the fuel using a steam atomizer gun with the atomizing steam

suppliedby either one of the two atomizing steam boilers. In general, the pumps

in the system have been placed such that a pump failure can be compensated for

by valving out the disabled pump and allowing the other pumps to carry the load.

Figure 3.2 presents a map of the buildings which are supplied hot water by the

central heat plant. This figure also shows many details of the distribution system

as of mid 1971. Major changes were made in the distribution system at the end

of the first quarter of 1970 and again in August 24, 1971, when flight crew training

building was moved from zone 2 to zone 3. In addition, other minor changes

were made periodically during the period in which the data for this study was

obtained. Although the maintenance algorithms are relatively insensitive to these

changes, the ability to simply update the algorithm offers an attractive solu-

tion to the problem which will be discussed further in Section 5.

3. 2 Role of Maintenance A18oritahms

The maintenance problem of this system is greatly simplified by its redundancy.

However, it is still desirable to have prior knowledge of an impending failure

and to perform the maintenance prior to the occurrence of the failure. This

has the dual advantages of allowing the failing component to be removed from

the system prior to doing more damage to other components in the
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system, and also eliminates the possibility of the failure creating an incon-

venience to the user through leakage or other damage which may occur between

occurrence and time of discovery of the failure.

The current approach to this problem is to perform preventive maintenance on

a schedule which has been designed to minimize the occurrence of failures in

the system. Although this system is far superior to simply waiting until the

failure occurs and then repairing the failure, it has several major drawbacks

which include: 1) a relatively high cost associated with performing the required

inspections, Z) opportunity for additional faults to be introduced during the

inspection process itself, and 3) the continued possibility of catastrophic failures

occurring because the inspection process either d_d not result in detection o£an -:_

impending failure or the failure developed too rapidly to be detected in the normal

preventive maintenaoce cycle.

The pres-eh6 stud#- seeks t5: dem0nstra£e the fea§ib-iHty0f a new approach t0'_ _ i_}:

maintenance_-0f-C-o-mplicated sys_ems'_based onthe concept of m0ni_oring the _=::_ _: :_

performance of:the:system continualI_=t0 det4ct incipient 0Ut 6f-_lerance per: :

formance so that corrective action can be initiated prior to the occurrence of

the failure. Clearly, this approach should be used in conjunction with a pre-

ventive maintenance (PM) program to further reduce the number of catastrophid I;_-: i

failures. This converts the classical preventive maintenance system to a de-

mand preventive maintenance (DPM) system where preventive maintenance is

performed prior to failure, but on only when required. The key question of

feasibility is the ability to detect incipient failure sufficiently prior to the

occurrence of the failure that the actual failure can be prevented: If such

ai-g0rithms can be:derive-d:then their application will eliminate the requirement :

for disassembling the equipment to perform the inspection and thus both reduce

maintenance costs and eliminate the possibility of introducing additional faults

into the system during an unnecessary inspection. In addition, the capability

to detect incipient failures allows one to correct the failure before it occurs

even if it occurs too rapidly to be detected by a standard PM program. This

will prevent further damage and its associated repair cost to both the heating

system itself and/or to the customers facilities.

Three types of algorithms would be useful for implementing a maintenance system

such as this. The most critical algorithm which must be developed is one to de-

tect incipient failures. This algorithm provides the basic information which is E

required to implement DPM Scheme: =: i_ one can detect in advance that this sys_e_n

is near failure, then one can initiate the appropriate corrective action. Howe_e_,: _r

this task is greatly simplified if the measurements can also supply the information

which is required to diagnosis where the impending failure will occur.

This will be accomplished by a second group of algorithms which will be applied

after the detection has been accomplished and will re-examine the measurements

-P-Z-



and diagnose the impending failure. This set of algorithms would then define

to the maintenance personnel what component must be removed from the system

and overhauled to prevent the failure from occurring. This time the failure

algorithm would allow the scheduling of maintenance for those failures occurring

sufficiently far in the future.

The demonstration of the feasibility of applying ADAPT derived algorithms to

the maintenance can be achieved if one shows that it is possible to derive an

algorithm for detecting out of tolerance performance of the system. Thus, the

major thrust of the present study was to investigate detection algorithms, select

a detection algorithm for verification and demonstrate through independent test

cases that such an algorithm can be derived for a system such as the KSC central

heat plant. In addition, the expected potential performance was determined as a

function of the complexity of the algorithm. The feasibility of diagnostic and

time to failure algorithms was also shown by deriving demonstration diagnostic

algorithms and time to failure algorithms, and projecting the potential perfor-

mance of these algorithms. Since these algorithms are far less critical to the

feasibility and since the performance projection has in the past proved quite

indicative of the actual performance, detail proof testing with independent test

data was only carried out for the detection algorithms.

Examination of Figure 3.1 shows that there are many operating options or

configuration in which the KSC central heat plant can operate. The major

variation in the system is probably due to different boiler combinations. Thus,

for the feasibility study, it was decided to limit the investigation to consideration

of only one boiler operating configuration. Since the feasibility of detecting out
of tolerance behavior was demonstrated for this condition, it follows that the

other boiler configurations would also be amenable to this approach. Boiler

No. 3 is significantly smaller than either Boiler No. 1 or Boiler No. Z, and it
is the only boiler which is too small to operate by itself. Thus, the number

of combinations of boiler operations which must be considered for this particular

system would be six. These six are: 1) Boiler No. 1 operating by itself,

2) Boiler No. Z operating by itself, 3) Boiler No. 1 operating with Boiler No. 3,

4) Boiler No. 2 operating with Boiler No. 3, 5) Boilers No. 1 and 2 operating

together and 6) All three boilers operating together. The configuration selected

for this study is indicated by the cross hatched component shown in Fig. 3.1.

This configuration allows any of the components of the system to be operating

with the exception of Boilers No. g and 3. Clearly, this still leaves a great

deal of variation in the system configuration and, if it were impossible to develop

successful algorithms with this general configuration, one could still consider

further reducing the number of options. However, the analysis showed that it

was feasible to develop the algorithm with all of the other variations included

and thus this approachwas not pursued. The details of this decision will be dis-
cussed further in Section 5. Z.
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3. 3 Applications of Maintenance Al_orithms with Present Central Heat Plant

The role of the maintenance algorithm in maintaining a system such as the KSC

central heat plant can be seen by examining how these algorithms could be used

with the present heat plant system. As part of the normal operation of the KSC

central heat plant, a maintenance log is kept in which pressures, temperatures,

and other pertinent measurements of the central heat plant are recorded hourly.

Figure 3. 3 shows a typical log sheet recorded for August 14, 1970. The ADAPT

algorithms have been derived to make use of this data which is recorded on the

log sheet as well as other pertinent data which might effect the operation of the

central heat plant such as the current weather information of key items in the

system. When the proposed maintenance syste m is implemented the time since

maintenance of key items will change since the preventive maintenance will no

longer be performed on a routine schedule. However, the date at which any

maintenance is performed on every key item of the system should still he re-

corded and the time since this maintenance used where the days since PM

variables appears in the data vector. There are two differences which could

affect the performance of the algorithm. The first is that various groupings

of maintenance items are no longer correlated and the second is that one would

expect considerable increases in time between maintenance on given items. The

first of these will not significantly affect the performance of the algorithm. If

it has an affect it would be to make it more difficult to observe this affect

when deriving the algorithm. However, this has already been accomplished and

thus this aspect in the change of the character of the maintenance is insignificant.

The increased length of time between maintenance of items can be significant as

it results in an extrapolation of the affect of this maintenance. It will only be-

come significant at long times and when it is significant the ADAPT validity

criteria may detect the problem occurring. However, even in this case the

algorithm updating procedures which have been suggested will account for the

difficulty. The worst situation that could result from this change in the way

the maintenance is done is that at some time period, long compared to the normal

maintenance cycle, the performance of the algorithm could be slightly degraded

and this degraded performance would exist until the first update of the algorithm.

It should be emphasized that the degradation should be very slight since it will

only occur in a relatively small number of variables which in aggregate make a

small contribution to the decision.

Thus, the records that are now kept provide an excellent basis for beginning

the maintenance of the KSC central heat plant with or without modification of

the heat plant, the data gathering system or acquiring any new data processin-g

equipment. The procedure consists of: i) taking the data which is now recorded

on this measurement log for the given hour during the day for which the system

is being evaluated, 2) combining this with the weather and other pertinent data,

3) punching this data, and 4) processing it in a general purpose computer. This

process is illustrated in Figure 3.4.



The ADAPT PPM algorithms would be stored in the computer and used to cal-

culate a number which was indicative of the health of the central heat plant and

by comparing this number to a pre-determined threshold decide if a failure

would occur. If a failure is expected, the ADAPT diagnostic programs would be

used in the same general purpose computer to determine where the failure will

occur. These diagnostic programs would include the ADAPT diagnostic

algorithms and logic required to sequentially apply all the required algorithms

and print out which component will fail. As indicated in Figure 3.4, this entire

process could be combined into a single program such that when the data and

ADAPT maintenance program were entered into the general purpose computer,

the program automatically would have applied the ADAPT detection algorithm

and, if this algorithm indicated that there was no problem with the system, the

computer would simply be programmed to print out that all was well. If the

ADAPT detection algorithm indicated that a failure was near, the program

would continue to perform the diagnostics and print out the results of the diagnosis

indicating the expected location of the failure.

Clearly, the preceding discussion has been oversimplified and several important

decisions must still be made. For example, the number of times which the system

is examined is a parameter which must be decided based on the performance of

the algorithm. If the algorithm is capable of detecting failures one or more days

in advance, it would appear reasonable to apply the algorithm only once a day if

the data were manually collected and key-punched. The false alarm rate can be

reduced by repeating the application of the algorithm at hourly intervals after the

out-of-tolerance condition is first detected and corrective action initiated only

in the event that a certain number of consecutive hourly applications of the

algorithm yield agreement that the system is in danger of failure. In this mode

of operation, a false alarm rate as high as one in ten could be tolerated for

the first application and one in three for the successive applications. This

will result in an overall false alarm rate of 1 in 300, or one false alarm per

year and provide significantly improved detection. It will also allow the

verification of the algorithm to be accomplished wi th a significantly smaller

number of test cases. The penalty paid for this improvement is a requirement

to apply the algorithm 3 extra times every two weeks. There are many trade-
offs such as to the number of cases, the false alarm rate to be set into the

algorithm, the role of the validity criteria and the time of day at which the

system should be evaluated which should be considered. These decisions do

not bear on the feasibility of implementing the system and merely provide

additional flexibility to meet the needs of the user. For the approach to be

feasible, one must be able to achieve a final false alarm rate of less than the

order of 1 in 100 with a 75 to 90% detection probability. This performance may

be achieved either through a single application of the algorithm or through a

combination of appropriately established thresholds and repetitive application

of the algorithm. Each of these modes of operation will be discussed in more

detail in Section 5. Z after the performance of the reference algorithm has been

derived. The key result of this discussion is that the maintenance algorithms

may be applied to the present KSC central heat plant without any additional

hardware if manual data collection and key punch is used.
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3.4 "Application with Automated Monitoring System

The possibility exists that the function of keeping the KSC central heat plant

maintenance log will be assumed by an automated data monitoring system which

would consist of appropriate sensors to take the data and transmit it to a central

maintenance computer where the information would be recorded periodically.

It will be useful to consider in some detail how the ADAPT algorithm could be

incorporated in this system to completely automate the entire DPMprocess.

The procedure is illustrated in Fig. 3.5. Comparison of Fig. 3.5 and Fig. 3.4

shows that the procedure for the automated monitoring is in principal very

similar to that of the manual monitoring. The measurements required are the

same as in the monitoring using the manual system. However, in the automated

system the measurement of the values and transmission of the values measured

to the computer will be accomplished by the automated detection system.

Because of the simplicity of the ADAPT algorithms, the planned maintenance

computer should easily have the capability to incorporate the ADAPT detection

and diagnostic algorithms within it. Thus, the maintenance computer can con-

tain as part of its normal function the ADAPT maintenance computer program

which is illustrated in Fig. 3.6. This program would take the weather data,

and hourly measurements of the central heat plant and process them through the

detection algorithm. One attractive way of accomplishing this would be to per-

form this function once a day at some specified time. The algorithm threshold

could be set for high false alarm rate, say the order of one and ten. If the

algorithm detects that the system is not operating normally, it will initiate

continued application of the maintenance computer program until three con-

secutive out-of-normal measurements spaced one hour apart are reached.

Note this is the same procedure suggested for the manual operation in the pro-

ceeding section. Alternatively, with the automated system, the algorithm

could simply be applied every hour and "n" consecutive failure indications

required to initiate action. Assuming that the one hour interval between measure-

ments are sufficient to make the cases independent and an individual false alarm

rate of one in ten, this will result in effective false alarm rate of 10"n.

In addition to initiating the consecutive decision logic, the detectio,_ of an out-

of-normal condition will also initiate the collection and recording of the

appropriate diagnostic data. When the prescribed out-of-normal indications

are given by the _DAPT classification algorithms, the computer program will

instruct itself to perform the diagnostics. The diagnostics will be performed

by processing the diagnostic measurements though a series of algorithms to

separate each failure mode from all other failure modes, separate each possible

region in which a failure could occur from all other regions, perform a nearest

neighbor analysis to determine the failure most like the one presently being de-

termined, and if the specific failure mode was successfully identified to apply

the time to failure algorithm to determine when the failure can be expected.
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The results of all these diagnostic algorithms will then be processed through
the decision logic to evaluate the answers obtained for all of the algorithms
and for each set of data. Depending on how near the incipient failure is to
failures which have occurred in the past, one o_:more of several answers are
possible. One possibility is the prediction of the failure followed by the identi-
fication and ordering of the possible failure modes. If a specified failure was

identified, an estimate of time-to-failure may be possible. This type of output

would be expected for the more common failures where greater learning data is

available to develop the algorithms. On the other hand, for the more rare failures,

there may not be enough information to develop a time-to-failure algorithm or

possibly even to positively identify the failure mode. In this case, the output

might be simply an indication that there was an impending failure or even just

that the system was operating in unusual mode. In both of these cases, the

nearest n eighbor algorithm and possibly the failure region algorithms would

give some indications which could be used to provide clues as to where the failure

should be expected.

Returning to Fig. 3.5, we see that the results of the application of this maintenance

computer program to the data collected automatically on the central heat plant

will produce the maintenance instructions indicating: i) all is well, Z) that a

failure will occur and the diagnostics of the failures, or 3) that the operation is

unusual and some sort of prognosis concerning this operation. In addition to

deriving the maintenance instructions, the maintenance computer would still be

used to produce the maintenance log which is now produced by hand and monitor

the alarms to indicate catastrophic failure. Alarms for such items as the boiler

being out or temperature below the minimum are no different than the alarms

which are currently used and are necessary because no maintenance system,

either the current PM system or the ADAPT PPM approach will be perfect.

The final function of the maintenance computer would be to select on a pre-

scribed basis (possibly utilizing the results of the detection algorithm) cases

to be used to update the detection and diagnostic algorithms. This data would

be stored on tape by the maintenance computer and periodically this tape would

be removed and along with an algorithm update program processed through one

of the existing general purpose computers at KSC to produce a new set of

ADAPT maintenance algorithms. This procedure, although not absolutely essen-

tial is highly desirable since it will significantly improvise the performance of

the maintenance algorithms with a very small cost in additional complexity and

processing. In addition, it provides the capabilities to account for the continual

changes which occur in the KSC central heat plant and distribution system. This

updating capability can be provided on any general purpose computer capable of

inverting an approximately Z0 by Z0 matrix. The equations required to update

the detection and diagnostic algorithms are given in Appendix E. It will be

limited to accounting for changes in the system which do not modify the form of

the data history (i.e. number of types of measurements which are used in the

algorithm). Examples of acceptable changes are such things as changing the

buildings on a given zone to another zone, minor changes in fuel oils, etc. An
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unacceptable change would be such as deleting a major component in the system
such as the atomizing boilers. For this latter type of change it would be neces-
sary to rederive the optimal base functions. This capability cannot be provided
on a generalized "cookbook" basis. The derivation of the optimum function re-
quires a detail analysis of the particular problem and is different for every
problem considered.

In summary, the application of the ADAPT maintenance algorithms to the

I_SC central heat plant can be accomplished without the addition of any hard-

ware in either its present configuration or in the configuration with an auto-

mated data monitoring system. In both cases, a _ertain amount of additional

software primarily the incorporation of the ADAPT maintenance program in an

appropriate computer is required. As a part of this study, Avco has supplied

KSC with ADAPT algorithms and these algorithms have been implemented on

general purpose computers at KSC. The feasibii_ty Of the entire system rests

on the ability to obtain a detection algorithm which at least when applied success-

ively over a fraction of a day will result in an acceptable detection probability

with a false alarm rate of the order of one per year or better.
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4. 0 DESCRIPTION OF ADAPT

4. 1 Definition of Data Histories

The ADAPT techniques address themselves to the representation and empirical

analysis of data which appear as data histories, i.e., an indexed series of

numbers. The generality of the ADAPT programs can be seen from the variety

of applications described in References 1-15. The features of ADAPT which

make it advantageous for empirical analysis are reviewed in Appendix A. In

the present case the indexing variable is the name of the measurement. Thus,

the indexed sequence of numbers which characterize the operation of the KSC

central heat plant at any given time may be viewed as a data history or plot as

illustrated in Figure 4. I. Here we have plotted the value of the measurement

as a function of the indexing variable which is simply a number associated with

the name of the measurement. To illustrate this the name of the measurement

has been included in Figure 4. I. This figure gives a portion of the data history

for Aug. 14, 1970, at midnight. From this figure we see that no rain fell between

Ii:00 p.m. and midnight on Aug. 14. The temperature at midnight (i.e. mea-

surement No. 2-)was approximately 82_O and the average rainfall for the past

twelve hours was also zero. The average temperature from noon until midnight

was 80 ° . This process is continued until a curve defining all of the measurements

to be analyzed is generated. This curve is defined as the input data history for

the case associated with Aug. 14, 1970, at midnight. Similar cases are generated

for each of the days and times considered in the analysis.

In general, the histories may be given in continuous {analog) form or in discrete

form. Since the ADAPT programs operate in digital computers, analog histories

are each digitized into a finite set of N numbers, so each data history is treated

as an N-dimensional vector in Euclidean space. If there are Mhistories, the

result is an N x M matrix of numbers.

4. Z Optimal Representation of Data Histories

With the M input history vectors defined, the first step in ADAPT is to construct

a set of optimum orthonormal base vectors. Since in general the number of

optimum base vectors to be generated will be less than the numbered required

for complete representation, there will be an error vector equal to the difference

between the history vector and its representation in the new optimum base. The

square and magnitude of this error vector is the measure of _.rror for each

history, and the average of these square magnitudes for all histories is the mean

square error incurred in representing the data history vectors in the new base.

For this process the definition of the word "optimum" in the expression, "optimum

orthonormal base" is that the optimum base is that base which minimizes the

above defined mean square error incurred when one represents the learning data

histories using the new base vectors. The optimum base is chosen in an ordered

famhion, $o that the first vector is the best and so on. For example, if only one

vector is used in the new base, that base vector is the one which makes the one
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vector representation error the smallest. If a second vector is used also, it

is chosen such that together with the first vector it minimizes the two vectors

representation error. This is continued for as many vectors as is necessary

or desirable for the analysis to be performed.

When formulated mathematically, this criterion requires the maximization of

a quadratic form _x_hose unknowns are the components of one of the "optimum"

base vectors, and whose coefficient matrix is the covariance matrix of the input

histories. This problem is a classical one in linear algebra, which often appears

under the names optimum empirical orthogonal functions, Karhunen-Loeve

Expansion, or principal components analysis of a matrix. $ The solutions for the

unknown vector components are the normalized eigenvectors of the covariance

matrix, and the resulting values of the quadratic form are the eigenvalues of

this matrix. Once they are obtained, they are simply arranged in order of de-

creasing size of the eigenvalues. The largest eigenvalue gives the most reduc-

tion in mean square error that can be achieved with 0nly one new base vector
and the corresponding eigenvector is this new base vector. The next largest

eigenvalue gives the most reduction in the error that can be achieved by using
a second new base vector in addition to the first 0ne-found above, and this second

vector is the eigenvector of this second largest eigenvalue. This process can

be continued until the desired accuracy is achieved. The sum of the NR largest

eigenvalues gives the maximum mean square error reduction which can be achieved

with NR new base vectors; when adding additional eigenvalues does not significantly

increase this sum, the use of the corresponding eigenvectors as additional base

vectors does not significantly improve the representation.

A convenient measure of the degree of representation achieved with a given

number of base vectors is the sum of the eigenvalues of the vectors used,

divided by the average square magnitude of the original data history vectors.

This represents the reduction in mean square error achieved divided by the

total error reduction possible; in statistical terms this is the percent of the

variation of the data explained by the representation used. Since information

is only conveyed by the variation in the data and the variation has the form of

an energy, the percent variation explained is also known as the information

energy. A similar measure of representation which is applied to the individual

data vectors is the ratio of the square magnitude of the data vector in the NR

base vector system to the original square magnitude of the data vector. This

provides a measure of the adequacy of the empirically derived base for repre-

senting each history, and when applied to a test history serves as the basis for

SFor a detailed discussion of the Karhunen-Loeve Expansion and its advantages

in empirical data analysis see Re_e_:enee 16.
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the apriori test of the validity of applying the empirical data analysis to the
test case.

For each history the NR components in the optimal system are the optimal
representation of the data in the sense described above. Alternatively, these
components may be interpreted as coefficients of the Fourier series of optimal
orthonormal functions representing the history. Thus, this vector analysis
is equivalent to the expansion of functions in a set of orthonormal functions,
of which the Fourier series is the most common example. The approach taken
is analogous to the classical solution of boundary value problems in mathe-
matical physics where the appropriate differential equation is used to define
a set of orthonormal functions to satisfy a given function on the boundary. This
boundary function is then expanded in the set of orthonormal functions defined
by the governing differential equation. In the case of empirical data analysis,
the governing differential equation is not available to define the set of ortho-
normal functions and instead the learning data set is used to numerically define
the best set of such functions or vectors.

The optimal components are used inallfurther empirical analysis. Thus,
the original M x N numbers representing M histories have been reduced to
M xNR components, plus N xNR numbers to define the optimal vector base.
Since the base system is optimal, the number of terms, NR, necessary to
give a useful representation of history is small, often of the order of 10 or
less, and the reduction in the number of numbers is usually large.

The ADAPT representation process just outlined can be clarified with the simple
example of two input histories, which has been carried through analytically in
Appendix B. For this special case the first optimal function is proportional to

the average of the two history functions, the second to their difference, a result

in accord with simple intuition. The relative sizes of the two eigenvalues is

found to depend on the degree of correlation of the two histories. This illustrates

the point that the more highly correlated information appears in the first term

of the optimal representation. Thus, the last termsinthe ADAPT representation

are the most noise-like, and dropping of terms in the ADAPT representation
results in retention of the easiest to use information.

4.3 Use of Optimal Representation for Developin$ Predictive Maintenance
Algorithm s

Having arrived at the optimal (Karhunen-Loeve) representation, attention is now

turned to use of the optimal components for performing empirical clustering

analysis, classification, parameter estimation, extrapolation and clutter sub-

traction. For clustering analysis, one represents each history by a point in

optimal coordinates, and the degree of similarity of two histories can be defined

as the distance between their two points. If the optimal representations are

normalized, this distance is simply related to the correlation of the two histories.
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Thus, the application of visual, nearest neighbor, or other cluster identi-

fication schemes to points (i.e. data histories) of the optimal space will lead

to identification of natural clusters and algorithms to identify their members.

For classification (including the special classification problem of detection)

the same representation of a history as point in optimal coordinates is used.

A number of parametric schemes and linear non-parametric schemes which

can be applied are included in the ADAPT programs. One frequently used

scheme assigns a single number to each history in the following way: All the

histories are divided into two classes according to the sorting desired. Then

an unknown direction (vector) in the optimal space is postulated, and the pro-

jection of each history on that direction is obtained. This projection is a scalar

associated with each history. The mean of this projection for each of the two

classes is found, and then the difference between the two means. Also, the

dispersion of the projections of each class about its own mean is found. The

postulated direction of projection is determined by maximizing the ratio of

the squared distance between the mean projections to the sum of the disper-

sions of the projections. When the direction of the projection is known, the

projection of each history is determined and the range in which it falls for each

class can be found. The criterion that a given new history is sorted into a given

class is that its projection on the direction found in this way falls within the

range of projections of the learning data of that class. This linear scheme

for sorting into two classes was first suggested by Fisher, and is known as

the Fisher linear discriminant.

This and other linear schemes may be extended to multi-class problems by

repetitive application, separating a different class with each application. If

the statistics of the learning data are Gaussian the maximum likelihood tech-

nique, which is included as an option in ADAPT, may be used for multi-class

classification problem s.

The ADAPT technique for constructing an algorithm to predict a physical

parameter associated with each history again makes use of the components

of each history in the optimal system. For every history in the learning

data, the known value of the parameter is written as a linear combination

of the optimal components. The unknowns are the coefficients in this linear

combination, which are taken to be the same for every history. The sum,

over all histories, of the square error of this linear representation is then

minimized to determine the coefficients. This amounts to a regression of the

parameter on the optimal components. When the coefficients are found, they

can then be used with optimal components of any new history to obtain an

estimate of the value of the parameter for that history ..........

ADAPT offers a unique approach to extrapolating data histories. The learning

data used is the entirehistory, including the region over which one hopes to

eventually extrapolate. This learning data is first used to find the optimal
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representation for the entire history. One then determines the best coeffi-

cients by making a least square fit of the available portion of the histories

to a generalized Fourier series using the optimal orthogonal functions over

the available portion of the history and these coefficients are used to recon-

struct the entire history from the complete optimal orthogonal functions.

The task of clutter subtraction is accomplished by first obtaining data histories
which characterize the clutter to be subtracted. These are the first few ADAPT

optimal functions obtained from data histories which were produced solely by

the phenomena whose characteristics are to be subtracted. These histories
characterize the clutter to be subtracted and are utilized as the first directions

in a Gram-Schmidt orthogonalization. The ADAPT optimization is interrupted

after the Gram-Schmidt orthogonalization and the components associated with

each of the directions determined by the clutter histories are set equal to zero

for all data histories. The ADAPT optimization is then continued through the

Karhunen-Loeve expansion, resulting in an optimal coordinate system which
does not contain the directions associated with the clutter to be subtracted.

When the histories are reconstructed using the series expansion in terms of

these optimal functions (i.e. coordinate directions} the resulting histories no

longer contain the characteristics of the clutter which was subtracted.

It is not necessary to actually find the optimal coefficients of a new history

which is being investigated to apply an ADAPT derived algorithm. The trans-

formation from the N-dimensional data vector space to the NR-dimensional

optimal vector space can be inverted and incorporated into the algorithm

vectors. Then the process of applying this algorithm to a new data vector

involves primarily the dot product or combination of dot products of this N-

dimensional data vector with an N-dimensional algorithm vector or vectors,

a rather simple procedure.

The development of maintenance algorithms for the KSC central heat plant

will require the use of both the classification and parameter estimation capa-

bilities of the ADAPT programs. Two types of classification algorithms can

be of use for the maintenance problem: 1) Failure detection algorithms and

2) Failure diagnostic algorithms. Failure detection algorithms are classifica-

tion algorithms in which one class consists of all of those data histories cor-

responding to times at which the system is performing normally and the other

class are those data histories corresponding to times when a failure will occur

in the near future. Diagnostic algorithms are required to determine which

failure mode is expected. This is obtained by performing a classification

analysis to separate each of the failure modes either from all other failure

modes or from all other cases. Finally, after one has determined that a

failure is going to occur and has diagnosed what type of failure this will be,
it would be useful to estimate the time at which the failure would occur. This

can be accomplished through the application of parameter estimation algorithms

-39-



where the parameter to be estimated is the time to failure. Thus, both the
classification and parameter estimation capabilities of the ADAPT programs

will be utilized to develop the appropriate maintenance algorithm for KSC

central heat plant.

4.4 Evaluation of Performance and Validity

An objective of the ADAPT approach to empirical data analysis is to provide

the analyst with information regarding both the performance and the validity

of the algorithms which he develops. The performance tells the analyst how

good his algorithm is when it is appiied to test data belonging to the same

population as the learning data used to derive the algorithm. The validity

criteria is a measure of how well the test data belongs to the population of

the learning data. Thus, the availability of performance data allows the

analyst: I} to select the best algorithm, Z) to verify that the performance

of the algorithm is sufficient to accomplish the objectives, and 3) to insure

that the algorithm is based on physics and not merely a fortuitous manipula-

tion of the data. The validity criteria on the other hand provides the user

with a measure of the applicability of the algorithm to the particular case

being tested. We shall now discuss the performance measure and then the

validity criteria.

Performance Measure - Fisher Discriminant

The linear discriminant used for the analysis of the KSC heat plant data was

the Fisher discriminant. Similar performance measures may be developed

for any linear discriminant, but many details of these performance measures

will differ for the particular discriminant. Since the Fisher discriminant

was the only one used for the analysis of the KSC central heat plant and the

performance measures associated with the application of ADAPT programs

are most highly developed for this discriminant, we shall limit the present

discussion to performance measures applicable to the Fisher discriminant.

The simplest measurement of the performance of a linear classification

algorithm such as the Fisher discriminant is to examine the projection values

actually obtained when the learning and/or test data is projected On the optimum

directions selected by the linear discriminant. The ADAPT programs present

a bar chart plot of these projections for each of the learning cases, which can

be used to visualize the performance of the algorithm on the learning data.

Figures 4. Z and 4.3 present such bar charts comparing the performance of the

universal detection algorithm derived using 192 measurements and the per-

formance derived using 50 measurements respectively. Examination of these

figures shows that although they present a detail view of the performance on

a case by case basis, it is difficult to get an overall picture of how much better
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one algorithm is than the other algorithm. Furthermore, it is clear that if
one wished to compare the more than 30 detection algorithms which were
derived as a part of this study, this measure of performance would be extremely
awkward to use.

The most desirable way to overcome the twin difficulties of obtaining a con-
venient overall measure of the algorithm performance and of comparing a large
number of algorithms is to evaluate the performance of an algorithm in terms
of a single number. Since the Fisher discriminant is the result of the minimi-
zation of the ratio of the sum of the squares of the within class scatter divided
by the distance between the means of the two classes, the value of this parameter
is an excellent measure of the performance of the Fisher discriminant. In
particular, the smaller the value of this parameter the better the performance
of the algorithm. For example, for the bar chart shown in Fig. 4. 2 this
parameter, designated by the quantity ,q _---//V has the value of . 52, whereas

for the algorithm presented in Fig. 4.3 this parameter has the value of .41.

In Appendix C it is shown that for the special case of equal standard deviations

of the projections of each of the classes, this parameter is uniquely related to

the probability of making an error. The corresponding values of probability of

error for the bar charts shown in Figs. 4. 2 and 4. 3 are approximately . 05 and

• 005 respectively.

It is of interest to plot the performance of an algorithm as a function of the ratio

of number of cases to number of dimensions used to develop the algorithm. A

plot such as this is called a performance map and Fig. 4.4 illustrates this per-

formance for the cases shown in Figs. 4. Z and 4. 3. The solid symbols in each

case represent the actual algorithm illustrated by the bar chart in Fig. 4. Z and

4.3. The open symbols represent other algorithms derived using the same data

and a different number of dimensions. This curve is particularly useful because

it allows the analyst to decide whether he may have confidence that the algorithm

is based on physics or is "overdetermined" and merely represents a mathematical

manipulation of the data with no physical meaning. For example, consider the

situation of fitting 3 points to a third order polynomial. The third order poly-

nomial represents a three dimensional space. Fitting 3 points to this third order

polynomial is always possible and normally these "overdetermined" coefficients

have no physical basis. However. iia significantly larger number of cases,

say 30, is fitted to this third order polynomial then one knows that there must be

some physical relationship embodied in the polynomial which allows one to fit

30 cases to a third order polynomial. The same is true in any empirical analysis

and in general, this phenomenom is a function of the performance of the algorithm.

This is illustrated in Fig. 4.4 by the cross hatched area which separates random

separations from good 6eparations. The random separations represent Avco's

experience with a great number of problems and show the region in which the

algorithm can perform even if there is no physical basis for the separation. Thus,

the location of an algorithm on the performance map immediately tells whether this
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algorithm displays the overdetermined character or not. It is also clear that
as one decreases the number of dimensions one moves vertically on the per-
formance map. However, at some point the decrease in dimensions will also
eliminate some information which is useful to the separation. When this occurs
the performance of the algorithm will decrease, the algorithm will move both
to the right and upward on the performance map. The objective is to get as
far to the left on the performance map as possible while satisfying the require-
ment of remaining a significant distance away from the random separation's
region. Thus, the performance map has been a useful tool for comparing
different algorithms and for carrying out the analysis required to determine
the dimensionality at which an algorithm should be produced.

Although the value of the Fisher parameter or the performance map make
excellent performance measures for comparing different algorithms, they
do not directly display the trade-off between detection probability and false
alarm rate. It is shown in Appendix C that for the special case where the
standard deviation of both classes are equal, the performance map can be
related directly to the trade-off curve between detection probability and false
alarm rate. However, this trade-off curve produced for any given algorithm
is another excellent way to compare algorithms since it provides a pictorial
display of this trade-off. Figure 4.5 presents these trade-off curves for the
Same aigorithms shown in Figures 4.2 thru 4.4. The ordinate on this plot is
the detection probability, that is probability that an out of tolerance condition
of the KSC plant will be detected by the algori_thm The abscissa is the false
alarm rate for the probability that the normal period of operation will be called
abnormal. It is clear from examination that Figure 4.5 that the trade-off be-

tween the detection probability and false alarm rate for each of the algorithms

is shown very clearly. In addition, this presentation clearly shows the relative

merits of the algorithms being prepared. Thus, once the dimensionality of an

algorithm has been selected, this detection probability versus false alarm rate

curve provides the most convenient method of comparing algorithms. In general,

through the remainder of this report when an algorithm's development is being

discussed its performance will be displayed on a performance map. When an

algorithm has been developed and is being discussed for use and testing, its

performance will be displayed on a detection probability versus false alarm curve.

Performance Measure - Parameter Estimation

The problem of evaluating the performance of a parameter estimation or re-

gression algorithm is quite similar to that of estimating the performance of a

classification algorithm. The simplest display in the performance of estima-

tion algorithm is a plot of the estimated value of the parameter versus the actual

value of the parameter. Fig. 2.4 shows such a plot for the estimated time to

failure for the atomizing steam boiler. Thus, the functional role of this presenta-

tion of the regression results is very similar to that of the bar chart for the
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classification results. It shows the performance of the algorithm on each case
extremely well. It also gives an excellent graphical qualitative picture of how
well the algorithm is working. But like the bar chart it is an awkward presenta-
tion for comparing a large number of algorithms or for the analysis of dimen-
sionality to be used in developing the algorithm. These two functions are again
better performed on a performance map.

As in the case of classification, the development of a performance map for
parameter estimation requires that one have a single number to evaluate the
performance of the algorithms including such things as correlation coefficient
or standard deviation of the error. In the ADAPT programs the measure of
performance is the ratio of the standard deviation of the error resulting from
the application of the algorithm divided by the variance (i. e. the standard de-
viation of the error when one uses the mean as the estimate of the parameter}.
This ratio is designated by the symbol _--'RAT. Again, the smaller the value
of this ratio, the better the performance of the algorithm. Thus, the per-
formance map shown in Fig. 4.6 for the time to failure algorithm illustrated
in Fig. Z. 4 is a plot of _AT versus the ratio of the number of cases to
number of dimensions. Here again, the ratio of the number of cases to number
of dimensions plays the same role as it did in the classification algorithms.
Again, experience with previous empirical problems has allowed the inclusion
of an experience factor for the probability that the algorithm will be based on
the physics of the problem and not merely a random separation. Thus, the
regression performance map shown in Fig. 4.6can again be used both to compare
the performance of algorithms and as a tool for the analyst while developing the
algorithm s.

Validity Criteria

The ADAPT programs also provide validity criteria which are based on the

ability of the optimal functions derived from the learning data to represent the

test data. These validity criteria are identical for and applicable to all ADAPT

classification prediction and clustering algorithms. The validity criteria essen-

tially makes use of the data vector's geometric property of length. The length

of the learning data vectors may be calculated in the original data space and then

compared with the new length when the learning data is represented in the optimal

ADAPT space. The ratio of these two lengths is defined as the validity parameter

(Q}. The validity parameter can be calculated for the test data vector by computing

its length in the original data space and the optimal ADAPT space. If the test data

vector's length is reduced significantly more than that of the learning data vectors

when it is represented in the optimal space, this is indication that the test data

is from a different population than the learning data used to develop that algorithm.

The major problem in applying this validity criteria is that of establishing the
threshold between valid and invalid cases. The correct way to establish this

criteria requires the knowledge of the distribution function of the validity parameter
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for both the population of valid cases and invalid cases. It is clear from some

rather obvious limits such as the fact that the validity parameter must lie be-

tween zero and one and that its standard deviation at both of these end points

must be zero that the distribution function is definitely non-Gaussian an(lin

fact, is not satisfied by any of the well known classical distribution functions.

Thus, one must experimentally develop the appropriate statistical properties

of each of these populations. It is relative easy to get a reasonable approxi-

mation to this distribution function for the population of the valid cases by plotting

up and examining the validity parameters for the learning data. However, it is

considerably more difficult to find an estimate of the statistics for the validity

parameter of the invalid cases. In fact, the only approach available for this

at present is to make some reasonable assumption for a threshold such as the

minimum value observed in the learning data or the mean value in the learning

data minus some quantity such as the standard deviation, evaluate a series of

test data against this criteria and then re-examine the performance on the test

data and determine the conditions for which the results are consistent. This

will be illustrated in more detail in Section 5.4 where the heat plant failure de-

tection algorithm performance is evaluated.

The validity criteria for the ADAPT extrapolation of data histories is based

on the fact that the learning data is now identical to the first portion of the data

histories and was not used to make the data base. However, the data which

was used to make the base also contains the portion covering the identical

range of the indexing variable as the learning portion of the data history to be

extrapolated. Thus, one may compute the RMS error for the first (i. e. known)

portion of all the learning data histories. One may then take the average of

this, finding the average RMS error for all the learning data histories and also

the standard deviation 0"-_ of these RMS errors. One may then compare the

RMS error of this known range of the test case with the average and standard

deviation of the RMS error for the corresponding region of the learning data

and calculate the confidence in the validity of the extrapolation. For example,

if the RMS error of the test cases falls outside of the range of the average RMS

error for the learning data plus or minus its two-sigma value, one has only 5%

confidence that the extrapolation will be accurate to the degree indicated by the

performance estimate based on the learning data.

The next sections of this report will present the detailed results of the repre-

sentation, detection, diagnostics, and time to failure estimates derived for the

KSC central heat plant using the methods which have been outlined above.
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FIGURE 4.2 - PROJECTION OF LEARNING DATA ON SEPARATION DIRECTION FOR

SEPARATING INCIPIENT FAILURES FROM GOOD CASES USIN(, 192
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FIGURE 4.3 - PROJECTION OF LEARNING DATA ON SEPARATION DIRECTION FOR

SEPARATING INCIPIENT FAILURES FROM GOOD CASES USING 50
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5.0 DETECTION ALGORITHMS

The implementations of the ADAPT derived maintenance algorithms into a

demand preventive maintenance (DPM) system described in Section 3 is

only feasible if one can derive an algorithm which will detect incipient failure

of the system. This section will present the demonstration of the feasibility

of accomplishing this by applying the ADAPT programs to the KSC central

heat plant data. To insure success in obtaining detection algorithms several

different avenues were explored and each of these avenues shall be reviewed

in this section. Many successful detection algorithms were derived. The

selection of the algorithm to be used for the final demonstration was based

on the algorithm performance, complexity and the complexity of the software

required to implement a complete set of algorithms of the selected type. The

algorithm selected was the universal detection algorithm for boiler No. I.

This algorithm was then optimized for maximum performance and tested using

approximately 200 independent test cases. All of these results are discussed

in Sections 5.1 thru 5.4. Section 5.5 presents a discussion of the implications

of these results to preventive maintenance.

5. 1 ADAPT Representation of Heat Plant Data

The power of the ADAPT approach to data analysis is primarily due to the

derivation of the optimum representation for any given set of data prior to

developing the empirical algorithms. The representation obtained by pro-

cessing through the ADAPT programs is correct for any set of data having

the same number of independent variables or indexing points as the data

histories used in the learning data. It is an optimum representation for that

subset of this data for which the learning data is a good sample of the population

statistics. Thus, it is necessary to develop a new base whenever the number

of index variables used for the analysis is changed and it is desirable to de-

velop a new base whenever the distribution of subclasses in the learning data

set is drastically changed. Every time one changes the number of measure-

ments used in the analysis, it is necessary to develop a new base to use the

smallest number of measurements in the ADAPT processing. Furthermore,

if one drastically changes the approach to achieving the detection algorithm, such

as changing the approach from deriving a universal detection algorithm to

deriving an algorithm for subgroup on the scatter plot, it is desirable to de-

velop a new base. It is also desirable to use a specific diagnostic base when

developing the diagnostic algorithms. For these reasons a relatively large

number of bases were developed in the course of this study both for the detection

algorithms and the diagnostic algorithms.

The methodology of developing the base, the general results displayed by the

base and the methods of using these results are essentially identical regardles,,
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of the details of the base. This section shall present a detailed review of

only one base. The initial base developed in this study was the 29 case

exploratory base using 190 independent variables. This base was used for

the initial exploratory analysis which will be described in Section 5. 2. At

the conclusion of the exploratory analysis it was decided to add two more

variables to the candidate variables and to use a basic 100 case data set as

the learning data for the detection algorithms. This data set was then used

to develop a new base with 19Z measurements and initial studies were per-

formed on this base which eventually lead to the reduction from 19Z variables

to the 50 most important variables or indexing points for detecting incipient

failure. This 50 point base is the base which was used in the final analysis

and is most relevant to the universal detection algorithm which has been

selected for detail evaluation. The details of this base will be used to illus-

trate development of the ADAPT representation.

The 50 variables selected for the final detection algorithms are listed in

Table Z. 5. The scheme for configuring the value of the measurements

associate with each of these variables or measurements into a data history

suitable for processing in the ADAPT programs is presented in Section 4.

This scheme _vas schematically illustrated in Fig. 4. I. Figure 5.1 presents

the corresponding data vector for August 14, 1970, as plotted out in its entirety

by the ADAPT programs. Figure 5. i presents the data history for all 50 of

the variables presented in Table 2.5. Although the names are not specifically

listed on Figure 5.1 as they were on Figure 4.1, they correspond to the numbers

or index shown in Table 2.5. For example, referring to Table Z. 5 we see

that indexing variable No. 30 is the number of gallons of oil used in the atomizing

boilers. Referring to Figure 5.1 we see that in August 14, 1970, the number

of gallons of fuel used in the atomizing boiler was i00.

The usual procedure in deriving the optimum representation with the ADAPT

programs is to first subtract the average of all the data histories from each

of the data histories to provide data histories having a zero mean. Figure 5. Z

presents the average data history for all I00 learning cases used to develop

this base. When these data histories were processed through the ADAPT pro-

grams, it was found that all the information obtained could be represented by

50 optimum functions. Figure 5.3 presents the amount of information presented

as a function of the number of optimum functions used. For example, if one uses

5 optimum functions, Figure 5.3 shows that the fifth optimum function contributes

almost 5% of the information contained in the total data set and the upper or

cumulative curve on Figure 5. 3 shows that the first five optimum functions

taken together provide approximately 88_0 of the information contained in the

data set.

Figures 5.4 and 5.5 present the first two optimum functions for representing

this data. The indexing variable for these optimum functions is again defined
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by Table Z. 5. Thus, examination of the first optimum function shown in

Figure 5.4 shows that variables No. 6, 9, 10, 15, 16, Z0, Z1, and 25
dominate the variation. In fact, reference to Figure 5.3 shows that these

eight variables account for almost 57% of the variation in the data. Reference
to Table Z. 5 shows that these variables are: Boiler No. 1 operating pressure,

steam pressure for atomizing boiler A, steam pressure for atomizing boiler

B, return temperature for zones 1 and 2, the 1Z-hr. average of the steam

pressure in atomizing boiler A, the 1Z-hr. average for the steam pressure

in atomizing boiler B, and the 1Z-hr. average of the supply pressure,

respectively. Since variables 9, 10, 20, and 21 are dominant, one may

interpret the first optimum function as being dominated by the definition of

which of the two atomizing steam boilers (see Figure 3.1) are operating at

any given instance. The next most important factor in determining the first

optimum function is clearly related to the load on the system since it appears

to be dominated by the boiler operating pressures, supply pressures, and

the zones 1 and Z return temperatures.

Examination of the second optimum function shown in Figure 5.5 shows that

considerably more variables are important to this optimum function. The

most important variables for defining the second optimum function are the

boiler operating pressure, the amount of fuel oil used, the return temperature

of the three zones, the 1Z-hr. average of the fuel oil used, the 1Z-hr. average

of the supply temperature and pressure and the rainfall over the past three

days. Realizing that the collection of the rainfall in the various drainage ditches

and manholes throughout the distribution system is a major contributor to the

load on the system, we see that the second optimum function is almost entirely

determined by how hard the central heat plant must work.

Before continuing with a physical interpretation of the representation, it will

be useful to clarify the meaning of these optimum functions by illustrating their

use in a generalized Fourier series representation. Consider the reconstruction

of the data history shown in Figure 5.1 using these first two optimum functions.

Since all of the optimum functions are orthogonal functions, the coefficients for

the generalized Fourier series may be obtained by the classical formulation

which is simply a dot product of the corresponding optimum function with the

data history. Given the set of coefficients corresponding to any data history,
one can reconstruct the data history as follows. The first step is to take the

first coefficient and multiply it times the first optimum function and add this

on a point by point basis to the corresponding value of the average input

vector {Figure 5. Z) to obtain the one term reconstruction. One then takes
the second coefficient and multiplies it times the second optimum function and

adds the result again in a point by point fashion to the one term reconstruction

to obtain the two term reconstruction. The two term reconstruction is shown in

Figure 5.6, when it differs by more than the line thickness from the original
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reference presented in Figure 5.1 the reference history has been included

on the figure as a dotted line. Comparison of the two term reconstruction

(the solid line) with the reference history shows that for this case the

reconstruction matches extremely well with only two terms. For this parti-

cular case, 62% of the information contained in the original data history is

contained in this reconstruction. Comparing this with the information energy

plot shown in Figure 5.3, we see that this history is somewhat below the

average of 7Z_/0 and thus the two term representation represents a below

average reconstruction. The process may Of course be continued by using

higher order terms in the series and the results of this continuation for the

five term and ten term representations are presented in Figures 5.8 and 5.9

in a format similar to that of Figure 5.6. Representations for the five and

ten term reconstructions are 85% and 95%, respectively. Comparison of

these representations with the average representation for five terms show that

this reconstruction is slightly less accurate than the average reconstruction.

In the case of the ten term reconstruction, it is a very typical match. As

would be expected, the agreement between the reconstruction and the actual

history improves as the number of terms used is increased. Furthermore,

it is interesting to note that the most difficult portion of the history to recon-

struct appears to be variables from approximately 31 thru 49. Reference to

Table Z. 5 shows that these variables are the maintenance records.

Since the optimum functions used to reconstruct all of the data histories are

identical, they can contain no information regarding the differences between

any of the cases. Thus, the entire physics of the problem must be included

in the coefficients of the optimum representation. Thus, Figure 5. 3 states

that the two numbers corresponding to the first two coefficients for each of

the histories in the learning data set represent 72g0 of the information which

can be learned from this data set. Since t\vo numbers can be conveniently

presented in a two dimensional presentation, it is useful to examine this best

possible two dimensional presentation. Figure 5.9 presents a scatter plot

of these two numbers. The abscissa on Figure 5.9 is the coefficient of the

first term in the generalized Fourier series representation of each of the cases

shown. The ordinate is the coefficient for the second term in the Fourier series

representation. The one's on this figure represent those cases taken during

normal operation of the central heat plant and the two's represent those cases

taken just prior to a failure in the central heat plant. Consider the case repre-

sented by the two located in the upper right hand corner of this figure. For

this case, one would reconstruct the two term history by multiplying 205 times

each of the values in Figure 5.4 add{ng these numbers to 53 times the value of

each of the indexing variables in l_igure 5.5 and sum the result of these two pro-

ducts with the average vector shown in Figure 5. Z. Examination of this figure

immediately shows that in general the easiest to represent 72_/0 of the information

does not contain enough information to make the desired classification algorithm

to separate incipient failures from non-failure cases.
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Three groupings of cases can be seen on the scatter plot shown in Figure

5. 9. The meaning of these groupings can be understood by recalling

the physical interpretation of the optimum functions presented in the dis-

cussion of Figures 5.4 and 5. 5. Since the first optimum function is pri-

marily concerned with which atomizing steam boiler is operating, the

separation in the first coefficient is due to this factor. That is, those

points with positive values of the first coordinate (abscissa) are operating

on steam boiler A and those with negative values of the first coefficients

are operating on steam boiler B, Figure 5.3 shows that approximately

50% of the entire variation in the data is due to the inclusion of both steam

boiler A and steam boiler B cases in the learning base. Thus, the problem

of deriving the detection algorithms could be greatly simplified by only using

one of the two steam boilers. Including all seven of the possible boiler con-

figurations in the analysis would add a great deal of additional irrelevant

variation to the problem and therefore the division of the problem into seven

similar problems to cover the various configurations of the boilers

has probably improved the algorithms performance at the expense of require-

ing additional algorithms to implement the system. Although further simpli-

fication would be introduced by dividing it into 14 instead of 7 problems and

only considering a single steam boilers operation, this further reduction

would probably limit the number of learning cases for any configuration to

the point that for the present data set, it would be extremely difficult to de-

rive the diagnostic algorithms, although it appears that one should be able

to derive detection algorithms. Since the performance of the algorithm

including the variation from steam boiler A to steam boiler B will be shown

to be satisfactory, it is recommended that the detection algorithm be de-

veloped including this additional variation.

The variation in the second coefficient (i. e. the ordinate) was due almost

entirely to how hard the system was working. The larger the value of the

second coefficient the harder the system is working. Thus, points located

near the bottom of Figure 5.9 represent cases where the load is very light

and points located near the top of Figure 5.9 represent cases where the load

is very heavy. It should be recalled that the first optimum function presented

in Figure 5.4is dominated by the definition of which atomizing steam boiler

is operating; however, that function also contains information regarding the

load. In fact, those parameters regarding the load such as the return tempera-

ture of zones land Z and the operating pressure of the atomizing boiler had

opposite signs to the corresponding values in the second optimum function.

Thus, as the load is increased a data point moves rapidly to the top of Figure

5.9 and slightly to the right. The two groupings of learning data having nega-

tive values of the first coefficient represent data histories having different

loads but operating with atomizing steam boiler A. Such groupings would be

created by separation between cold and hot days or between data histories

taken in the rainy season and not during raining season.
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In addition to providing the scatter plots of the first two coefficients, the

ADAPT programs also provides scatter plots of any two coefficients desired

by the analyst. It is standard procedure not only to examine these first two

plots, but to examine the remaining combinations. This is done to reveal

serious errors in the data recording or keypunching and the presence of any

unusual case or group of cases. An example of this occurred on the base

which has just been described. Figure 5.10 shows the scatter plot of the

coefficients of the fourth and fifth optimum functions for this base. Exam-

ination of this plot shows that all of the cases are grouped in the upper right

hand corner except for a single case which is in the lower left hand corner.

When this phenomenon occurs it is an indication that the isolated case is a

very unusual case and, therefore, investigation is required to determine

whether the unusual nature of the case is based on a physical characteristic

oft he case or is due to an error in data recording or keypunching. This

review can be assisted by the examination of the optimum functions associated

with the coefficients used on the scatter plot in which the case is unique.

In this case, the two optimum functions of interest are the fourth and fifth

which are shown in Figures 5.11 and 5. 12. Examination of these two figures
shows that the important variables to the scatter plot shown in Figure 5. 10

are the number of gallons of fuel used, the return temperature for zone Z,

the 1 Z-hour average of the supply temperature and the three-day rainfall. The

strongest of these is the 1Z-year average of the supply temperature. Thus, the

first step is to review these variables for the case represented by the point in

the lower left hand corner of Figure 5.10. Review of the data runs which pro-

duced this base shows that point to be the case associated with 2400 hours on

April ZZ, 1971. This was the case associated with the incipient failure of the

atomizing steam boiler which occurred at 9:00 on April Z3, 1971. Careful

examination of this case shows that in the process of transforming the data

from the original data sheets to the keypunch instruction sheet, a subtraction

was not carried out. This resulted in an error of a factor of approximately 30

in the value of this measurement. Clearly, this case must be corrected. There-

fore, this case was deleted and replaced by a correct case, and the base was

rederived.

A single erroneous case does not drastically effect the optimum base for

representing the data. This can be seen by comparing the information

energy and the optimum functions associated with the corrected base

with the corresponding information energy and optimum functions for

the original base (Figures 5. 3 thru 5. 5}. The corresponding information

for the new base is presented in Figures 5.13 thru 5.15. The information

energy and first optimum function are essentially identical and thus

the physical interpretation discussed earlier does not change. Although

at first glance the second optimum function presented in Figure 5. 15 looks

different from that presented in Figure 5.5, this is not the case. Care-

ful examination of these two figures will show that Figure 5.1 5 is actually

the mirror image of Figure 5.5. Since the ADAPT programs are dealing

with directions in the optimum space, the sign associated with these direc-

tions has no effect on the optimality of the base. The apparent difference
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between Figures 5, 5 and 5, 15 is simply due to the program arbitrarily
selecting different sign for the second function. The only effect of this
change is to make a corresponding change in the coefficient associated
with each history. Thus, in the new base the second coefficient of a history
will be the negative of its coefficients in the original base. Clearly, the degree
of representation as well as any of the physical information contained has not
been altered by this change.

This change manifests itself in the scatter plot by reversing the sign associated
with the physical interpretation. Thus, the scatter plot for the new base shown
in Figure 5. 16 is essentially identical to that shown in Figure 5. 9 except the
sign of the second coefficient has been changed. Thus, the two groups occurring
near the top of Figure 5.9 now occur near the bottom of Figure 5.16. The one
group occurring near the bottom of Figure 5.9 occurs near the top of Figure 5. 16.
The reader can verify that the discussion of the physics associated with the optimum
function presented in Figure 5.5 is identical to the physics which would be inferred
from Figure 5.15 except that the effect of the sign of the ordinate of the scatter plot
is reversed.

The effect of correcting the erroneous case is fairly significant for the
fourth and fifth optimum functions which are strongly influenced by the 12-

hr. average of the supply temperature. The effect on the higher numbered

optimum functions has simply been to shift these functions down by one

position in the series since with this error corrected the variation which

previously required both the third and fourth optimum functions for repre-

sentation now requires only a single optimum function. This is illustrated

by Figures 5. 17 and 5. 18 which present the seventh optimum function for

the original base and the sixth optimal function for the new base, respectively.

Examination of these two figures shows them to be essentially identical. This

result is typical of all the optimum functions beyond the fifth term. Figures

5.19 thru 5.2Z presented third, fourth, eighth, and nineteenth optimum functions

associated with the corrected base. The reader can easily verify that the third

optimum function is essentially associated with fuel consumption, the fourth

optimum function corrects the fuel consumption for the rainfall, sixth optimum

function deals with the oil consumption of the atomizing steam boiler, the

eighth optimum function deals with the difference between the 1 Z-hr. average

and the instantaneous fuel rate, and the nineteenth optimum function defines
a low load condition.

Considerable analysis such as that which has been discussed above can be

carried out on each base developed in support of this program. This analysis

would lead to considerable understanding of the important factors and mechanisms

controlling the operation of the KSC central heat plant. The preceding discussion

has given an example of how the representation can be used to get a better under-

standing of the system, and to provide an insight to assist in making decisions

regarding the development of the detection algorithm. It is only this latter result
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of this analysis of the representation which is pertinent to the specific objectives

of this study. Thus, a complete analysis of the representation considering the

higher order terms for the base presented here, and the other bases developed

as a part of deriving detection and diagnostic algorithms is beyond the scope of

this study.

The major conclusions with respect to developing the detection algorithms

resulting from this analysis of the representation are: 1) more than two terms

will be required to develop a detection algorithm, Z) if the derivation of the

detection algorithm proves too difficult, it can be significantly simplified by

considering only one of the atomizing steam boilers in the derivation of the detec-

tion algorithm with the penalty of increasing the number of detection algorithms

required, 3) further reduction in the irrelevant variation in the data can be

achieved by limiting the algorithm development to certain load conditions,

4) it is probably necessary to develop separate detection algorithms for each

of the seven boiler configurations, and 5) the case associated with April 2Z,

1972, at 2400 hours should be omitted due to an error in keypunching the data.

5. 2 Exploratory Analysis

Exploratory analyses were carried out to: 1) select preprocessing to be used

for the remainder of the detection algorithm development, 2) project the ex-

pected performance of a final algorithm, 3) illustrate the effect of the reduction

of the number of measurements on the performance of the algorithm, and

4) to estimate the performance which could be obtained from each of several

approaches to deriving the detection algorithm. This section will review the

primary results of each of these exploratory investigations.

Preprocessin_

The ADAPT programs offer the user several options for preprocessing the data

prior to selecting the optimum representation. Certain preprocessing options

can be selected based on knowledge of the problem. The preprocessing options

considered in developing maintenance algorithms for the KSC central heat plant

include the subtraction of the average data vector prior to processing through

the representation program and the equalization of the variation in each of the

measurements. The subtraction of the average from each data history has the

advantage of producing data histories with zero means and of minimizing the

irrelevant variation. Except for problems involving extremely unusual situations

such as clutter subtraction, a subtraction of the average vector from each data

history normally results in easier derivation and therefore better algorithms.
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The variation associated with each of the measurements used for the present

analysis was approximately equalized by multiplying the measurement value by

a constant Such that the maximum values of the measurement fell within the same

order of magnitude. In some cases, this was also achieved by subtracting

appropriate constants from each measurement. Although programs are available

within the ADAPT system to provide exact equalization of the variation, the

application of these programs can only be justified relative to the simple approach

used here when it is known that each variable will have approximately equal

influence on the representation. Since this is not the case for the present

analysis, the more approximate equalization approach was utilized.

The ADAPT programs also provide options to increase or decrease the significance

of spikes in the data histories by preprocessing each variable by either taking

its logarithm or raising ten to the power of that variable. These processes may

also significantly affect the number of terms required to achieve a given repre senta-

tion. The ADAPT programs also include preprocessing options to carry out a

normalization such that the magnitude of each data history, i.e. data vector, is

unity.

Raising each variable to the power of ten would accentuate the uncertainty associated

with the lack of knowledge concerning the proper variation which should be

associated with each of the measurements. Thus, this preprocessing option can

also be rejected. However, the log preprocessing and the normalization pre-

processing cannot be rejected on an apriori basis. For this reason the initial Z9

case exploratory data set made up of 190 variables was utilized to investigate the

effect of the log and normalization preprocessing on the performance of the algorithm.

The results of this investigation are summarized in the performance map presented

in Fig. 5. 23. The reference processing without normalization or log preprocessing

is shown by the solid line connecting the circles. The effect of normalization is

indicated by the solid line passing through the square symbols. As can be seen

the effect of normalization can be expected to be very small, and for this particular

case, a slight reduction in performance is observed. Based on these results it

can be concluded that normalization will probably have an insignificant effect on

the performance of the detection algorithms. Noting that the normalization has the

disadvantages of slightly increasing the complexity of applying the algorithm and

significantly increasing the complexity of interpreting the physics associated with

the algorithm, the decision was made not to normalize the data.

The effect of taking the logrithm of each measurement before processing it through

the ADAPT programs is shown by the solid line passing through the triangles.

This algorithm has significantly poorer performance than the reference case, and

in fact, has such poor performance that one cannot have high confidence in the

physical basis of that algorithm. For this reason the log preprocessingwas also

rejected. Thus, for the remainder of this study, the data used will neither be

normalized or nonlinearly distorted and the only preprocessing used will be to

subtract the average data history from each data history prior to processing and

to approximately equalize the variation associated with each of the measurements

by multiplying them by an appropriate constant.
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Projected Performance

The performance map shown in Figure 5.3 can also be used to estimate the

expected performance of the algorithms on test cases. The process of estimating

this performance is illustrated by the dash line which proceeds nearly vertically

from the position of the algorithm on the performance map. The slope of this

line is based on experience and represents the decrease in performance which

will be observed due to the partial overdetermined nature of any algorithms which

are near the cross hatched line on the performance map. Experience has shown

and analysis has confirmed (see Appendix C) that when the ratio of number of

cases to number of dimensions exceeds approximately six, one can expect that

there will be no further significant degradation and performance as one moves

vertically on the performance map without rejecting useful information. Thus,

these exploratory studies indicate that it should be possible to develop a universal

detection algorithm with a performance parameter ([0"/v) of approximately . 67.

This corresponds to a probability of error between . 05 and . 1.

Effect of Number of Measurements Used

The same exploratory data base which was used to evaluate preprocessing was

used to illustrate the effect of reducing the number of variables on the performance

of the algorithm. The reduction in variables is achieved by examining the relative

importance vector for the algorithm and only retaining the most important

variables as defined by this relative importance vector. The results of this

analysis are also summarized in Figure 5.23.

The solid symbols show the performance of algorithms developed on the original

190 dimensions, the most important 74 of these 190 measurements, the most

important 10 of the 74 measurements, and the most important 5 of the 10 measure-

ments. As can be seen by examination of this performance map these algorithms

were developed at considerably different values of the ratio of the number of

cases to the number of dimensions, and therefore, a direct comparison of their

performance might b e misleading. In this particular case, the direct comparison
of the performance would give the same qualitative result§; however, to obtain

meaningful quantitative results the comparison should be between the projected

performance of these algorithms. Thus, following the dash lines for the algorithms

being considered, one may calculate the projected performance in the same

manner as was done for the reference 190 dimensional algorithm. Note that for

this 190 measurement algorithm, the projection from either the 13 or 14

dimensional cases is identical. This simply means that in reducing the number

of dimensions from 14 to 13 no significant information was discarded. The

fact that the 10 measurement algorithm projects to the same point is purely

coincidental. Thus, the projected performance parameter for these four algorithms

are: .67, .48, .67, and 1.Z, respectively. These values correspond to

probability of error of approximately .05, .01, .05, and .Z.
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As pointed out in Section 4, any value of this performance parameter can be
associated with a performance trade-off curve of detection probability versus
false alarm rate. This curve is also convenient for illustrating the effect of
the number of measurements used and is shown in Figure 5.24. Symbols on this
figure are identical to those used on Figure 5. 23 and correspond to the same

algorithms. Figure 5. 24 also lists the ten most important variables which were
used in the ten variable algorithm. The first five of these ten are the variables

which were used in the five variable algorithm. Figure 5. 24 clearly shows that

initially the reduction in the number of measurements used results in significant

improvement in the performance of the algorithm. The improvement in the

performance of the algorithm when reducing from 190 to 74 variables is most

likely due to the fact that the majority of 11 6 variables which were deleted apparently

contributed very little information to the classification problem and a great deal

of confusion to the data analysis. This process was continued and the relative

importance vector for the 74 algorithms was examined and the 10 most important

of these variables retained and used for the 10 variable algorithm. The performance
of the 10 variable algorithm is significantly reduced relative to the 74 variable

algorithm. This is due to the fact that the 64 variables which were discarded

in this reduction contained enough significant information relative to separating

failed from unfailed cases to overcome the confusion loss resulting from using the

larger number of variables. This implies that the optimum number of variables

to be used for the analysis of the heat plant lies somewhere between 10 and 190.

Continuation of the process to 5 variables clearly would be expected to lead to

further reduction in performance and Figure 5. Z4 verifies this further reduction.

Type of Detection Algorithm

There are several types of detection algorithms which might be considered as

the basis for the demand preventive maintenance system for the KSC heat plant.

The easiest algorithm to use but most difficult to achieve would be a universal

detection algorithm which would predict the presence of an incipient failure

regardless of which boilers were operating, the type of failure, load on the

system or mode of operation. The next easiest algorithm to implement would

be effectively a series of universal detection algorithms limited to a specific

boiler configuration. For example, the universal boiler-1 detection algorithm

which is valid for any operating condition or load provided only boiler No-1 is

operating. Clearly, a similar algorithm must exist for boiler 1 operating in
conjunction with boiler 2, etc. For the KSC central heat plant it was shown in

section 3 that there are a total of seven such detection algorithms required. It

might also be possible to develop algorithms Which would detect only specific failure

modes. For example, a detection algorithm might be developed to detect incipient

failures of the atomozing steam boiler. Again the variation should be reduced

and the data used to derive this algorithm and thus the derivation should be somewhat

simplified. If the algorithm worked exclusively with respect to detecting only

the failure on which it was developed, there would not be any need for diagnostic

algorithms with this type of detection algorithms. However, it is unlikely that

this algorithm would work in this manner since many failures look sufficiently

similar that the algorithm developed for detecting one particular type of failure is

very likely to detect other types of failures also.
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A final method of subdividing the cases to reduce the amount of variation which

must be handled in deriving the detection algorithm is to use the ADAPT scatter

plot outputs to define natural groupings which have relatively small amounts of

variation within the groups. Figure 5. Z5 illustrates such a selection. This

figure presents the scatter plot of all of the available 81 measurement cases.

This scatter plot was produced by projecting this data on the first two optimum

directions of a 74 measurement base. Group 2 which is included in the solid box

on this figure was then selected and used as the learning data set.

If the same base had been used to develop the group 1 detection algorithm as was

used for the scatter plot on which the group was selected, one would expect the

saving in variation to occur primarily by removal of variation associated with

the first two terms of the optimal space for which Figure 5.25 is the projection.

However, since this grouping was used on a different base, this reduction of

variation occurred not in the first two optimum directions but in the higher ordered

optimum directions. This can be seen by comparing Figures 5. Z6 and 5. 27.

Figure 5. Z6 presents the information energy as a function of number of terms used

for the base made up of the cases in group I. The corresponding information energy

for all the cases used in the reference 81 measurement algorithm is presented in

Figure 5.27. Comparison of these figures shows that the amount of information

contained between Z and Z0 terms is significantly greater for the base developed

on the group I cases.

In order to investigate which of these four types of algorithms were feasible,

exploratory algorithms were developed on the 81 measurement base. The 81

measurements used in this base were selected by considering the relative

importance vector for the initial exploratory studies of each of these algorithms.

The five algorithms which were prepared are: an example of a universal detection

algorithm for a single boiler, (i. e. 1) the universal boiler No. 1 detection

algorithm); an example of an algorithm to detect a specific type of failure,

(i. e. 2) the atomozing boiler failure detection algorithm); two examples of

algorithms for detecting failures in certain portions of the system, (i.e. 3) an

algorithm for detecting failures occurring in the central heating plant, 4) an

algorithm for detecting failures occurring outside of the central heating plant, and

5) the algorithm for detecting the failures occurring in group 2 as defined in

Figure 5. Z5. The performance of each of these algorithms as a function of the

dimensionality is summarized in the performance map presented in Figure 5. Z8.

The solid lines through the appropriate symbols represent the actual patch of a

given algorithm on this performance map. The performance of the algorithm

developed for a ratio of number of cases to number of dimensions between Z. 5

and 3 has been projected to determine the expected performance of these algorithms

on the test data. Although in a few cases this does not represent the best per-

formance that one can anticipate achieving by full development of the algorithm,

it does approximate the performance that one can expect given approximately an

equal amount of development effort for each algorithm.
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The projected performance of each of the algorithms shown in Figure 5. Z8

is summarized as a trade-off curve between detection probability and false

alarm rate in Figure 5. Z8. In order to determine whether an algorithm is

shown on Figure 5.29 will be useful in the predictive preventive maintenance

system, we must establish acceptable limits and false alarm rates and de-

tection probability. In Section 3 a scheme for requiring a total of four indica-

tions of a failure before initiating action is outlined which was applicable to

both the manual and automated implementations systems. This scheme

required that after the first failure was detected no action will be initiated

until three more consecutive detections occurred. The false alarm probability

(PF.A.) for a scheme such as this is given by

3

PF.A. = (PF.A.1 } (PF.A.Z) (5.1)

and a corresponding detection probability (PD) is given by:

PD "_ (PDI) (PDZ)3 (5. 2)

where: PD1 = the detection probability for the initial detection of a fault

PD2 = the detection probability for each of the subsequent evaluations

PFA1 = false alarm probability for the initial detection

PFAZ = false alarm probability for the subsequent detections

Thus, if one considers that the initiation of the further analysis required to

evaluate three consecutive faults is acceptable once every ten days, one may

select PFA1 = to 0.1. If we desire approximately one false alarm per year with

respect to initiating maintenance action, one should select PFAZ = • 3, yielding

an overall false alarm rate of . 003 or approximately one per year. Examining

Figure 5. P9 we see that PD1 corresponding to PFA = "1 is .94 for the universal

detection algorithm and the PD2 corresponding to PFA of . 3 is . 98. Substituting

these into equals 5.1 and 5. Z we find that the overall detection probability is . 88.

That is the scheme outlined will detect 88% of the failures with only one false

alarm per year.

A similar analysis for the other three algorithms shown in Figure 5. Z9 yields

a detection probability of approximately . 97 for either the algorithm to detect

field problems or the algorithm for detecting scatter plot Group z failures. The

same scheme applied to the algorithm for detecting failures in the atomizing

boiler gives a detection probability of . 93. Examining Figure 5. Z9 we can see
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the advantage of this multiple application of the algorithm. In order

to achieve the same false alarm rate with a single application of these four

detection algorithms, one would have detection probabilities of approx-

imately 0.55, 0.87, 0.85, and 0.73. If one uses the multiple applica-

tion result any of the four detection algorithms give performance which would

be satisfactory for implementation of the predictive preventive maintenance

approach. Since the development of universal detection algorithms for the

seven boiler configurations is considerably less expensive than any of the other

approached tried, it is believed that for the KSC heat plant application this

is the best algorithm. There are other algorithms with better performance

and for other applications these might be desirable. However, if the expected

performance of the universal boiler No. i-detection algorithm can be achieved

and proven, feasibility of the predictive preventive maintenance approach will

have been established in a mode utilizing a relatively straight forward detection
scheme.

The relative importance vectors which go with these five algorithms are pre-

sented in Figures 5.30 to 5.34. These relative importance vectors show the

importance of each of the 81 measurements to the decision being made by each

of the five algorithms. The importance is measured by the absolute magnitude

of the relative importance vector corresponding to the index number associated

with the measurement as defined by Table 5.4. Thus, examining Figure 5.30

we see that measurements No. 3, 1B, Z4, 43, 48, 49, and 71 are quite important

to the universal detection algorithm for Boiler No. 1 failures. Reference to

Table 5.4 shows that measurement No. 3 is the rainfall during the past hour.

Measurement No. 15 is steam pressure and atomizing Boiler A, measurement

No. 24 is the supply temperature, etc. Examination of Figures 5.30 thru B.34

show that amount of rainfall during the past hour is important to the universal

and field problem detection algorithms, whereas the longer period rainfall is

more important for the Group Z detection algorithm. The change in the water

flow through Boiler No. 1 is important to the universal Boiler No. 1 detection

algorithm, the algorithm for detecting in-plant failures, extremely important

to the algorithm for detecting field failures. It is insignificant for the algorithm

for detecting failures in Group Z. Clearly, analysis of these relative important

vectors can provide a basis for understanding of how each of these algorithms

works and how one should approach the problem on imporving the algorithm.

Since the universal detection algorithm has been selected as the recommended

approach for the KSC heat plant, the further development of these detection

algorithms will be illustrated in the next sections using this algorithm as the

example.

5.3 Optimization of Universal Detection Algorithm

The exploratory studies have answered the question as to what preprocessing

should be used and which algorithm should be developed. We have also seen
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as part of these exploratory analysis that the number of measurements used
can have a significant effect on the performance. One of the steps is optimizing
the algorithm is to selectively reduce the number of measurements used by
examination of the relative importance vector. Another major step is to select
"the number of dimensions to be used for the algorithm. Decision must also be

reached on exactly how the algorithms are to be applied and as to whether the

validity criteria should be applied with the algorithm. Some of the process of

reducing _:he number of measurements was accomplished in the exploratory

analysis. As pointed out in Section 5.1 initial analysis was performed on 192
measurements. This 192 measurement base was reduced to an 81 measurement

base for the exploratory analysis. The 81 measurements were selected as 81

measurements pertinent to all five of the algorithms investigated in the explora-

tory analysis. Now that the analysis has been reduced to a single algorithm,

one can be more selective and select only measurements pertinent to this single

algorithm. This was done and the resulting 50 measurements which were

selected were used to formulate the base which has also been presented in

Section 5.1. It is instructive to compare the effect of this reduction from 192

measurements to 50 measurements on such things as the variation, the scatter

plot, and the optimum functions. The information energy for the 50 variable

base is presented in Figure 5.13. The corresponding 81 measurement base was

presented in Figure 5. 27. Figure 5.35 presents the information energy for the

original 192 measurement base. This figure confirms the behavior that as one

decreases the number of measurements, the representation becomes easier and

the number of dimensions required to explain a given amount of the information
decreases.

The simplification of the representation is displayed dramatically by the correspond-

ing scatter plots. Figure 5.36 presents the scatter plot for the original 192 mea-

surement base. This should be compared with the scatter plot for the 50 measure-

ment base presented in Figure 5.16. The reader notices immediately that in the

50 measurement base there are three very tight distinct groups as compared to

a relatively large scattering of groups occurring on 19Zmeasurement base. Thus,
we see as the number of measurements have been reduced we have been able to

find a representation in which the definitions of the natural groups have become

more precise. Comparison of the first and second optimum functions given in

Figures 5.37 and 5.38 for the 192 measurement base with the optimum functions

presented in Figures 5.14 and 5.15 for the final 50 dimensional base again shows

that the reduction of the measurements has modified the representation. In 192

dimensional base the first optimum function is effected by a great number of

variables. The first variable in Figure 5.37, the day of the year contributes

considerable variation to the data; but when the relative importance vectors were

analyzed, it was shown to be relatively insignificant to the detection problem.
The day of the year was therefore omitted from the 50 measurements selected

for use in the final algorithm development. Thus, although the first optimum

function is dominated by the atomizing steam boiler for both the 50 and 192 dimen-
sional algorithms, the domination is more complete for the 50 measurement base.
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The second optimum function shows that in the 192 measurement base the

atomizing boilers are still significant contributors indicating that the first

optimum function was not adequate to completely explain the interrelations of

this characteristic with the other measurements. Figure 5.15 implies that

the atomizing steam boiler measurements are no longer the dominant measure-

ments for the 50 measurement base. Thus, for the 50 measurement base the

first optimum function was able to explain a much greater percentage of the

interaction of the atomizing steam boiler with the other variables.

Examination of the relative importance vectors has allowed us to reduce the

number of variables used in deriving the algorithm. The next question is that

of dimensionality which should be used for the detection algorithm. Since the

number of learning cases was limited to approximately i00 by the availability

of usable data, the maximum dimensionality which one can consider will be of

the order of 40 to 50. Thus, the initial processing was performed using 40

dimensions and the resulting relative importance spectra is shown in Figure 5.39.

This figure shows that dimensions 38 and 40 made significant contributions to the

performance of the algorithm. The Z8th dimension was the next significant mea-

surement and the next was the 19th dimension. As discussed in Section 4 this

effective dimensionality displays itself dramatically on the performance map.

The performance map for this algorithm is shown in Figure 5.40.

The trace of this algorithm on the performance map passes through the three

points designated by the squares representing dimensionalities of 40, X9, and Z0

at'which the algorithms were developed. The 29 and Z0 dimensional cases were

selected by examination of Figure 5.39 which indicated that these two algorithms

would be near break points in the path of the algorithm along the performance

map. Comparison of Figures 5.39 and 5.40 illustrates that the quantitative sig-

nificance of the relative importance vector on the performance map is greatly

distorted by the nonlinearities involved. Thus, even though the greatest importance

fell in the 38th optimum direction one sees little difference in the projected per-

performance of the 40 dimensional and 29 dimensional algorithm. On the other

hand, there fs Considerable difference between the projected performance of the

29 and Z0 dimensional algorithms as indicated by the dash lines passing through

these algorithms. As previously pointed out once the projected performance in

terms of the performance parameter, _-i/V has been determined, one can make

an estimate of the expected detection probability versus false alarm rate. This

has been done for the Z0 dimensional algorithm and for a compromise between

Z9 and 40 dimensional algorithms. This compromise was used since it is felt

that the projection is not sufficiently accurate to account for the differences be-

tween the Z9 and 40 dimensional algorithms. The resulting performance trade-off

curves are presented in Figure 5.41.

It is interesting to note that the projected performance for the Z0 dimensional

algorithm is exactly the same as that which was projected for the 81 measurement
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algorithm in the preceding section. This implies that the 20 dimensional algorithm

is based on the same physical principals as the algorithm which was being in-

vestigated in the exploratory studies using 81 measurements and 30 dimensions.
Thus, we see that the reduction of the number of measurements from 81 to 50

has allowed us to achieve the same performance with approximately 10 less
dimensions.

The projected detection probability versus false alarm rate again allows us to

evaluate the expected detection probability using the multiple application schemes

which are being considered for this demand preventive maintenance approach.

Applying equations 5.1 and 5.2 to the data presented in Figure 5.41 we see that

since the predicted performance for the 20 dimensional algorithm is identical

to the performance for the previous 81 measurement algorithm, the detection

probability remains at 88%. For the higher dimensional algorithm the projective

detection probability associated with a false alarm rate of approximately one per

year is 96%. As before both of these detection probabilities are acceptable. The

lower the dimensionality the less likely will it be to employ the validity criteria

successfully use the algorithm. For this reason, there is some advantage in not

having to use the higher dimensional algorithms. However, the determination of

this requires an analysis of the proof test cases which will be presented in the

next section. Therefore at this point we shall consider both the 29 and the 20

dimensional algorithms as candidate algorithms for the detection required to imple-

ment the demand preventive maintenance scheme for the KSG central heat plant.

It should also be pointed out that once the specific false alarm rate has been

selected, the Fisher weighting parameter, see Appendix G, provides a way in

which one may increase the algorithm performance even more. Since the present

performance of both algorithms is adequate and the final selection of the false

alarm rate is not advisable at this stage of the program, this additional optimiza-

tion was not employed. Its potential effect on the shape of the trade-off curves
is illustrated in Section 6.0.

Figures 5.42 thru 5.44 present the relative importance vectors for the 40, 29,

and 20 dimensional algorithms, respectively. Examination of these three relative

importance vectors shows that there is a great deal of similarity between the 40

and 29 dimensional algorithms. This would have been expected by inference from

their similar performance as shown on the performance map. Although there are

some significant differences between the 20 dimensional algorithm and

the 29 dimensional algorithms there are also many significant similarities. For

example, measurement No. 29, the average fuel temperature is important to all

three algorithms. In contrast measurement No. 49, days since preventive main-

tenance of the portable boiler only appears significant to the 40 dimensional algo-

rithm. The fact that this variable is not significant for the 29 dimensional

algorithm is a reasonably strong indication that this is a fortuitious match rather

than a physically connected to the detection of incipient failures. The agreement

of this result with physical intuition is further justification for considering the Z9

dimensional algorithm rather than the 40 dimensional algorithm.
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5.4 Algorithm Evaluation

The discussions presented in the preceding sections have shown that the ADAPT

programs provide a relatively complete evaluation of the algorithms as a by-

product of their derivation. In this section we shall present a more conventional

evaluation of the detection algorithm which will show that the estimate of the

expected performance of the algorithm provided by the ADAPT learning process is

valid. This evaluation will also provide additional confidence in the ability of

the ADAPT derived failure detection algorithm to perform the detection of

incipient failures required to insure the feasibility of the implementation of

the predictive preventive maintenance system.

The evaluation presented in this section will consist of the results of testing

approximately ZOO independent test cases against the universal detection

algorithm. These independent proof test cases may be considered as belonging

to one of three groups: 1) test cases expected to be similar to the learning

cases, Z) test cases obtained under significantly different conditions than the

learning cases, and 3) those cases containing errors. The proof test cases

obtained under essentially the same conditions as the learning cases include all

those cases obtained for the same operating configuration, i.e. , boiler #1

operating by itself, and over a time period during which the design of the heat-

ing plant and distribution system was the same as during the learning period.

The learning data was obtained essentially between May of 1970 and the end of

1971. The minor changes in the distribution system which occurred about

August 197I should not invalidate any test cases. Onthe other hand, the major

changes in the distribution system which'occurred early in 1970 can be expected

to have a significant effect on the performance of the algorithm. Similarly, the

change in configuration from boiler #1 operating alone to boiler #2 operating

alone would also be expected to have a significant effect on the performance of the

algorithm. The testing which will be presented in this section will resolve the

questions associated with the impact of these variations on the performance of

the algorithm.

One of the major problems associated both with obtaining adequate learning data

and with performing proof test evaluation of this data is the availability of high
confidence truth data. In this case, the truth data is the actual identification of

the date and time of each of the failures and the insurance that those cases

selected as failure free are indeed free of failures. This information was gener-

ally obtained by examination of the P.M. and work order records, a summary

log kept by Mr. Guggenheirr_ and the plant log. The most useful single piece of

information was the summary log kept by Mr. Guggenheim, which appeared quite

adequate for identifying the date on which failures occurred. The determination

of the time of failure often required additional detective work. One technique

that proved quite effective was to examine the plant log for the time at which

the failed component was replaced by a redundant system.
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In general, errors in the truth data are more critical with respect to the evalua-

tion than to the derivation of the algorithms. Gonsiderable experience with

ADAPT programs have shown that a few incorrect learning cases usually have

a relatively minor effect on the derivation of the algorithm. However, a few

incorrect learning cases can have a significant effect both on the performance

evaluation resulting from the ADAPT analysis of the learning data and on the

performance analysis resulting from the evaluation of independent proof data.

In general errors where the existance of a failure is not detected are more

likely. This might occur if: I) the failure were considered sufficiently insignifi-

cant that it would not be eported to Mr. Guggenheirn for inclusion in his log,

2) the maintenance would be carried out by the maintenance crew without the

preparation of the work order records, and 3) the performance of the maintenance is

omitted from the plant log. If these three events occurred, there would be no

way to determine that there had been a failure on that day. The other type of

truth data failure, (i. e. a day is identified as having a failure when a failure

did not actually occur) should only result when the occurrence of a failure is

recorded on the wrong day. In this case it is likely that this particular failure

would be recorded in an inconsistent manner between the three sources of

failure information. Several cases of such inconsistency were noted and these

cases were not used either in the learning data or in the evaluation.

The algorithms were applied to the test data using the procedures recommended

for the manual application of the algorithms. The universal detection algorithm

tested are the algorithms presented in Table Z. I, 5.3 and 5.4. These tables

list the equations for the dot product of a data vector with the corresponding

algorithm values which have been associated with the index parameters listed

in the tables. The name of each of the index parameters is summarized in

Table 2. Z for the 50 component data vector. The names for the 192 component

variables which include the 50 variables are summarized in Table Z.6. To

simplify the relationship of the names in 'fable Z.Z, Figure 5.45 presents a

heating plant log sheet with the hourly value spaces replaced with the associated

name and number of the variable.

In some cases it is desirable not only to apply the algorithm but also to apply

the validity criteria which were discussed in Section 4. The validity criteria

consist of a series of dot products of the same format as the algorithm itself

which result in values that must be squared and summed and then compared

with the minimum acceptable value. The appropriate vectors to use for the

application of these validity criteria as well as a more detail description of the

procedure to be used are summarized in Appendix D.

The proof testing consisted of the application of the universal detection

algorithms and their associated validity criteria to the ZOO test cases. The two

algorithms which should perform best are the 29 and 20 dimensional universal

detection algorithms. The performance of these two algorithms on the 207

test cases is summarized as a function of the particular type and use of test

case in Table 5.6. The detail implication of these results may be considered
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for each of the two types of testing performed.

Proof Testing

The proof testing of the algorithm on cases obtained under essentially the same

conditions as the learning data was performed on a total of 79 good cases and 94

cases of failures including failures in the atomizing steam boiler, sludge in the

fuel tank, boiler #I, flue gas leaks, and combinations of these with field failures.

The projection of these 173 cases on the scatter plot of the first two optimal

directions for the 50 variable base is presented in Figure 5.46. Comparison of

this figure with Figure 5. 16 shows that all of the test cases fall within the

region of the scatter plot of the learning data. Furthermore, the test cases can

be associated with the same three groups of data which were observed in Figure

5.16. This proof test data included variations in both time of day and day of year

relative to the learning data. However, there were no variations in either the

operating or design configurations of the heating plant.

Figure 5.47 shows the projection of the 94 failed cases on this same scatter plot.

Again, one observes that all of the failure cases fall within the region defined by

the learning data, and also conform to the same three groups. In Figure 5.47

the atomizing boiler failures are designated by symbols I and 5, the sludge in the

tank by the symbol Z, the boiler #I failures by the sumbols 3 and 6, the flue gas

leak by the symbols 7 and 4 and the field failures and combination field and other

failures are the symbols 8 and 9.

Table 5.6 tabulates the performance of the algorithm on these test cases as a

function of failure mode for a threshold of zero. This zero threshold as discussed

under algorithm design has been set for a false alarm rate of one in ten. Both

algorithms approximate this performance with the Z0 dimensional algorithm

missing approximately 5 of the good cases to give a false alarm rate of 0.6 out

of I0 and the Z9 dimensional algorithm missing 9 of the good ones for a false

alarm rate of approximately I. 1 out of I0. The detection of the various failures

varies both between algorithms and between failure types. Both of these varia-

tions are significant.

The performance tradeoff curves which were discussed as part of the descrip-

tion of the learning data performance evaluation which ADAPT performs can

also be used to evaluate the performance on test data. The use of these perfor-

mance tradeoff curves for this evaluation shows how the algorithm will perform

over a wide range of false alarm rates and detection probabilities. Figure 5.48

presents such a curve for the testing of the 173 proof test cases on the

Z0-dimensional algorithm. The dashed line presented on Figure 5.48 is the pro-

jected performance taken directly from Figure 5.41 and represents the perfor-

mance estimated by the ADAPT programs from the learning data.

There are several ways in which the test data may be presented on a detection

probability versus false alarm rate curve. The simplest and most common is
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to select a threshold, count the number of detections and the number of false

alarms and calculate the detection probability and false alarm rate. One may

then change the threshold and repeat the procedure obtaining another point on

the curve. The entire tradeoff curve may be constructed in this manner. To

evaluate arbitrarily small false alarm rates would require an infinite number

of cases. This is impossible and the range over which the detection probability

and false alarm rate curve can be compared with actual test data by the simple

method is limited by the number of test cases. This s illustrated by the cross

hatched regions in Figure 5.48. The data points surrounded by a square in Fig-

ure 5.48 were obtained as just described for different thresholds. The cross

hatched region represents the area over which it would be possible to place a

given data point due to the uncertainty in the detection probability and false

alarm rate resulting from a finite number of cases being used in the evaluation.

Clearly this region becomes larger as one approaches the smaller false alarm

rates or as one approaches the detection probability of i. In the particular

presentation of Figure 5.48, this uncertainty is not visible near detection

probabilities of I due to the fact that there is very little space involved in the

region between a.detection probability of .99 and I. 0. Examination of the cross

hatched area shows that for the 173 test cases the regions of uncertainty become

quite large for false alarm rates, less than approximately °03. Comparison of

both the cross hatched regions and the data points surrounded by a square with

the dash or projected performance shows that in the region that one has certain-

ty in the test performance and also in the region of interest which for the present

application has a false alarm rate of . i, the agreement between the ADAPT

projected performance and the actual test cases is excellent.

Another way in which the test data may be used to project theperformance is

to assume that the distribution of the values produced by the algorithm is

Gaussian. This assumption is also made in the ADAPT projection of the learn-

ing data to a performance tradeoff curve. The form of the ADAPT algorithms,

see reference 9, provide an argument for the applicability of the central limit

theorem and therefore for the existence of a Gaussian distribution of the "

algorithm values. If one assumes this distribution, then one may use the test

data to calculate the mean and standard deviation. The tradeoff curve for

detection probability versus false alarm rate is then constructed from this

information. This curve is represented by the line interrupted by plus signs

on Figure 5.48. If the algorithm value had a Gaussian distribution, it is

also possible to estimate the confidence level in any detection probability or

false alarm rate as a function of the number of test cases used. If these con-

fidence levels are applied to the false alarm rates associated with the test data

curve shown in Figure 5.48, one obtains the 95% confidence limits shown by the

solid lines passing through the circles on this figure. Again we see that the perfor-

mance of the 95% confidence band and the projected performance from the ADAPT

learning data are in reasonable agreement. The conclusion that the central
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limit theorem suggests a Gaussian distribution cannot be supported at false
alarm rates which are of the order of the reciprocal of the number of test
cases or smaller. Thus, we must conclude that one cannot evaluate the

performance of the algorithm for false alarm rates of the order of the recip-

rocal of the number of test cases and less, The evaluation of these algorithms

can only be considered firm for the region of false alarm rates of approximately

0.1 to 1.0. However, for the application to the KSC heat plant a false alarm

rate of 0o 1 combined with multiple applications will yield false alarm of the

order of 1 per year. Thus, the number of tests carried out are sufficient to

verify both the ADAPT projected performance based on the learning data and

the feasibility of the predicted preventive maintenance system.

The projection of the test results on Figure 5.48 under the assumption of a

Gaussian distribution is also suspect due to the non-uniformity of the per-

formance of the algorithm as a function of particular failure type. For

example, the failures associated with combinations of problems are detected

significantly less well than the failures associated with boiler #1 or failures

in the atomizing boiler. This phenomena will result in a multi-model dis-

tribution function which cannot be described accurately by a Gaussian distri-

bution function. Thus, the best method of evaluating the performance is the

direct Calculation of the detection probability and false alarm rate by counting

the false alarms and detections actually observed on the test data as one

changes the threshold. This inforrn'ation which was presented as the data

point surrounded b/ a square and the cross hatched area on Figure 5.48 has

been summarized in Figure Z. Z where it is again compared with the projec-

tion from the learning data. In Figure Z. Z, the triangular symbols for false

alarm rates greater than 0. 1 correspond to the square symbols on Figure

5.48. The triangles for false alarm rates between o03 and 0.1 are the cen-

troid of the corresponding cross hatched areas shown on Figure 5.48°

Figure 5.49 shows a figure corresponding to Figure 2. Z for the 29 dimensional

algorithm. Again the dashed line represents the projected performance as

taken from Figure 5.41 for the Z9 dimensional algorithm and the solid triangels

represent the performance of the Z9 dimensional algorithm on this test data.

Comparison of this projected performance and the actual performance shows

that the Z9 dimensional algorithm performs considerably poorer than was pro-

jected from the learning data by the ADAPT programs. However, when the

ADAPT validity tests were utilized in conjunction with this algorithm, its

performance proved to be quite similar to that which was projected using the

learning data. Thus a comparison of Figures 2.2 and 5.49 suggests that the

Z0 dimensional algorithm can be used at least for cases obtained on the con-

ditions similar to the learning data without the necessity of performing the

validity criteria test where as the higher performing Z9 dimensional algorithm

should only be used in conjunction with the ADAPT validity criteria. This

conclusion is further supported by the remaining evaluation tests carried out

using the data obtained on conditions which differ significantly from those

under which the learning data was obtained. Thus, this aspect of the perform-

ance will be discussed after the discussion of the remainder of the evaluation

tests.
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Evaluation T estinG

Fifteen cases were obtained and tested in which the boiler #I algorithm was

applied to the boiler #2 operation as ifthe boiler #Z had been boiler #1. In

addition, 19 cases were obtained from the period prior to May 1970 when the

hot water distribution system was considerably different from that used when

the learning data was obtained. Table 5.7 shows the average representation

or validity criteria for these two cases as compared to both the learning and

proof data. We see that in the case of all three dimensionalities considered,

the test cases obtained before May of 1970 are represented more poorly than

either the learning data or the test cases obtained assuming that boiler #2 is

essentially the same as boiler 1. The representation, assuming that boiler

Z is essentially the same as boiler 1, is also reduced somewhat from the proof

test and learning data. It is considerably better than for the cases before
May of 1970. This indicates that the assumption that boiler Z is essentially

equivalent to boiler 1 is less severe than the assumption that the configuration

before May 1970 was the same as after May of 1970. This is entirely con-

sistent with the perfcrmance as indicated by Figure 5.7 or the applicability of

the algorithm summarized in Table 5.5. Table 5.5 shows that the assump-

tion that boiler #2 was essentially the same as boiler #1 for the limited number

of 15 test cases had no significant effect on the performance of the algorithms

since it identified all 15 cases cormectly. However, in the case of the

assumption that the configuration prior to May of 1970 was identical to the

configuration after this time period resulted in only 13 of the 19 being correct-

ly identified for the 20 dimensional algorithm and only 10 of the 19 for the 29

dimensional algorithm. Furthermore, the majority of the errors were in the

direction of predicting failures when there was no failure. In other words,

the radical change in this configuration of the distribution system made the

data appear as if there were a failure in this system. This is entirely con-

sistent with the physical results that since one considered leaks in heat exchangers

and other field problems as failures that any unusual (relative to the learning

cases) change in the configuration which would radically affect the load for a

given operating condition should actually appear as a failure. Thus, the results

illustrated by Table 5.7 are not surprising.

In addition to these 34 cases there were 3 cases in which data recording and

punching errors were made. All 37 of these cases were represented in the

50 measurement base in order to perform this testing. Eight other cases

which were obtained and later found to correspond to inconsistencies in the

truth data were also tested, These 45 cases are shown on the scatter plot

presented in Figure 5.50. The symbol 1, 3 and 6 represent boiler #Z cases,

symbols 2 and 4 represent cases obtained prior to May of 1970, symbols 5

and 7 represent those cases containing errors for which no proof data was
available.

Comparison of Figures 5. 16 and 5.50 show that symbols 1 and 4 are con-

siderably outside of the range of the scatter plot obtained on the learning data.

This again amplifies the fact that these cases are significantly different from
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the learning data and adequate testing is necessary before one can presume

that the algorithm will perform on these cases.

Validity C rite ria

In Section 4.4 it was shown that the major problem associated with applying

the ADAPT validity criteris is the determination of the threshold to be

applied to the representation. Some estimate of a usable threshold for the

algorithms discussed thus far can be obtained by analysis of the performance

of these algorithms as summarized in Tables 5.5 and 5.6 as compared to the

representation summarized in Table 5.6. Changes relative to the learning

data as great as that resulting from the assumption that the data obtained

before May 1970 was the same as the data obtained after May of 1970 were

sufficient to cause significant errors in all algorithms. On the other hand,

the assumption that Boiler Z and Boiler 1 were identical was not sufficient

to cause large reductions in the performance of the algorithm. Furthermore,

the performance of the algorithm on the proof test data was significantly

reduced for the _9 and 40 dimensional algorithms but not for the Z0 dimen-

sional algorithm s.

Table 5.6 shows that for the 20 dimensional algorithm the representation of

the before May 1970 cases had a mean value of 83-1]Z% with the standard

deviation of 6%. This implies that if one were to choose a validity criteria

that the representation must exceed 83.5%, 50% of the invalid cases would

pass the validity criteria. This is too great a percentage of invalid cases.

If the distribution function for the representation (Q} is Oaussian, then the

addition of one standard deviation (i. e. 6% to this validity criteria yielding

a value of 89.5% would imply 30% of the invalid cases would pass. However,

examination of a properties of the representation shows that the distribution

function must be very different from Gaussian, and in fact, one standard

deviation for this value of an average representation will allow even less than

30% of the invalid cases to pass. Thus, a reasonable validity criteria for the

20 dimensional algorithm is a representation of 89.5%. Examination of the

average representation (Q) for both boiler Z and the proof test data on the

20 dimensional algorithm Shows that both of the se significantly exceed this

minimum requirement. Thus, one would expect the performance on both the

proof test and the boiler 2 data to be approximately as good as on the learning

data. A similar analysis can be made for the Z9-dimensional algorithm. In

this case, a representation of 98.5% should insure that the performance will

be similar to that of the learning data. Examination of the result s for boiler

2 shows that less than ; 30% actually meet this requirement and thus the relative-

ly good performance on boiler _ indicates that the particular out-of-normality

of boiler 2 is not of a type which causes significant problems for this particular

algorithm. Approximately 30% of the proof test cases do not pass this validity

test. This provides reasonable explanation for the degradation in performance

of the proof test cases. Apparently, these differences from the learning data

were significant for this particular algorithm. Similar analysis on the 40

dimensional algorithm shows that even perfect representation is not adequate
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for this high dimensional algorithm. This actually is not the case due to

the fact that as one approaches representation of I00%, the distribution

function approaches the delta function and thus more and more non-Gaussian

so that there is always some validity criteria less than 100%which is

acceptable; however, in this case it is clear that the validity criteria prob-

ably should be of the order of 99.95% and thus very little of the proof test

data and almost none of the boiler 2 or before May 1970 data would pass this

validity criteria.

These general results are in good agreement with the performance map

presented in Figure 5.40. Since in this figure both the ?9- and 40-dimensional

algorithms are still quite near the random separation region, there is a por-

tion of these algorithms which is not based on the physics of the problem.

Therefore, any significant reduction in representation will make some random

contributions to the decision statistic. Only when the algorithms approach a

ratio of number of cases to number of dimensions of approximately six can

one expect a large tolerance on the representation. Thus, the performance

illustrated by Figure 5.49 as compared to Figure 2.2 could easily have been

anticipated from examination of the performance map of Figure 5.40.

5.5 Implications to Preventive Maintenance

The major implication of the successful incipient failure detection algorithm

is that one now has the option to perform maintenance on a demand as well as

a schedule basis. The advantages of performing maintenance on a demand

basis have been reviewed in Section 3. There are also conditions under

which one might find it advantageous to implement both the schedule and demand

maintenance systems to complement one another. Examples of cases such as

this are those cases where failure during operation is extremely costly such

as applications to spacecraft. In this case, one would still desire to perform

schedule preventive maintenance to minimize the number of failures occurring

during the operation of the system while retaining the demand preventiv.e

maintenance system to allow one to switch away from components which are

about to fail during the operation. The combination of the scheduled and

demand preventive maintenance systems will probably result in a more

expensive maintenance system than a simple demand system, but will provide

a system with even less likelihood of a catastrophic failure.

If the scheduled maintenance is to be performed either by itself or in con-

junction with the demand preventive maintenance, examination of the rela-

tive importance vectors such as that presented in Figure 5.44 can assist in

improving the scheduling of the maintenance. Referring to Table 2.5, we

see that variables 31 thru 49 are the time since the last scheduled preventive

maintenance was performed. Noting that the maximum interval between a

scheduled preventive maintenance on any item in the learning data is that

interval which is currently being used, it follows that the lengthening of any

of the intervals for those scheduled preventive maintenance operations which

show little importance in failure detection might lead to increased failures.
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Thus, it is recommended that those PM items which do not appear significant

in the relative importance of the detection algorithms should not be changed.

As would be expected, the great majority of the schedule preventive maintenance

items are in this category indicating that the existing PM schedule is an effective

one.

When a particular item in the PM schedule appears in the relative importance

vector as significant with a position value, (i. e. the time since the last pre-

ventive maintenance inspection is greater than average), the system has less

likelihood of failure. Thus, positive relative importance implies that the

schedule should be reduced. Similar reasoning indicates that if the schedule

maintenance has a significant negative value, maintenance is not being per-

formed frequently enough and the frequency of the schedule maintenance should

be increased. Examination of Figure 5.44 shows that those schedule maintenance

items which have positive relative importance values and, therefore, are

apparently being performed too frequently include the electrical and mechanical

PM on the fuel pump, on the LTW pump, the electrical PM on the chemical

pump, and the electrical PM on the cooling tower. This same figure shows

that those PM's having significant negative contributions to the detection algo-
rithm include the electrical PM qn the makeup feed pump, PM on the sump

pump, and the mechanical PM on the cooling tower. This indicates that the

frequency of these preventive maintenance operations should be increased.

Examination of both the optimum functions and the relative importance vector

suggests that it is desirable to provide additional automatic sump pumps in

all manholes in which water collects after rains and to modify the high

temperature hot water lines so that they are either insulated from any rain

which may fall around them or are removed from areas in which rain water

can flow over them. This follows from the fact that the load on the system

as indicated by the first optimal function is dominated to a large extent by

the rainfalls, This is reinforced by the fact that the one-hour rainfall appear-

ing in the relative importance vector also correlates with the variables defin-

ing how hard .the heating plant is working. Thus one might conclude that

reduction of the heat loss due to the flow of rain water in the system will have

two benefits: 1) a significant reduction in fuel consumption due to a decrease

in the load on the system and Z) a reduction in the major variation of the data

set thus allowing further improvement in the performance of the predictive

preventive maintenance algorithm s.

Detail examination of the relative importance vector shown in Figure 5.44

also provides insight as to the manner in which this algorithm is working and

why it has capabilities to detect incipient failures which are often better than

the capability of the operator. The first point to notice is that instead of just

using the performance measures available in the instrumentation of the system

the algorithm is also making use of external influences such as rainfall and of
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the time since the most recent maintenance. The consideration of all fifty

items simultaneously is something which is beyond the capability of the

human mind unless the consideration has been formalized into a specific

procedure or at a maintenance algorithm. For example, one might consider

that the increase in zone flows would have the same influence regardless of

the zone. However, examination of the relative importance vector shows

that a decrease in the flow in zone 3 can be compensated for by a corres-
ponding decrease in the flow of zone Z. However, an increase in the flow

in zone Z at the same time that the flow in zone 3 decreases is a strong

indication that the system may soon have a failure. The reader is cautioned

that this conclusion is only one of a great many combination of events which

are considered simultaneously by the ADAPT algorithms and cannot be used
by itself as a detection scheme.

The analysis of the effect of the number of measurements presented in

Section 5.2 showed that when the number of measurements used drop below

from 10 to 74, there is a significant decrease in the ability to predict
incipient failures. Even as small a set of measurements as I0 will lead to

a great many interactions when one considers that the threshold on each

measurement should be different depending on the value of each of the other

measurements. It is this complex interaction between these measurements

that requires an algorithm such as those derived by the ADAPT programs to

insure proper interpretation of past experience.
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TABLE 5.1

LEARNING CASES FOR UNIVERSAL BOILER 1 DETECTION ALGORITHM

Failure Free Cases

Da te

May 1970

July 1970

August 1970

December 1970

April 1971

May 1971

August 1971

October 1971

November 1971

Failure Cases

No. Case s

Z

1

4

1

3

17

Z

i0

I0

Mode

Field Failure s

Field Failures

Field Failures

Field Failure s

Field Failures

Field Failures

Distribution Pump

Atomizing Boiler

Atomizing Boiler

Atomizing Boiler

Cooling Tower

Cooling Tower

Sludge in Oil Tank
& Fuel Valve Prob.

Forced Draft Fan

Boiler No. 1

Boiler No. 1

Boiler No. 1

Flue Gas Leak

Plant Shut Down

Failure Date

5/29/70

12/4/70

611171
1011ZlTl

11/9/71

12/4/71

10/Z7/71

8/11/70

4/23/71

lo/21/71
4/Z5171

5/6/71

5/3-5/70

5/9/71

6/I/71

lO/lZ/71
1012,5171

11/11/71

IZ/6/70

No. Cases

3

5

2

2

I

3

Z

Z

2

Z

3

Z

6

3

3

Z

1

5

1
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TABLE 5.5 USE OF 207 TEST CASES

NO CASES

173

15

19

207

USE

PROOF TEST-VARIATION OVER

TIME OF DAY AND DAY OF YEAR

EVALUATE BOILER 1 ALGORITHM

ON BOILER Z

EVALUATE EFFECT OF MAJOR

CHANGES IN DISTRIBUTION

SYSTEM
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TABLE 5.6

SUMMARY OF TEST CASES

NO. Correct-0 Threshold

No. Cases Use Class 20 Dim. ] Z9 Dim

79

Z7

1

14

7

45

94

I0

5

4

15

Proof Test -

Variation over

time of Day and

Day of Year

Evaluate

Sensitivity

to

Change

Data Recording

Good

Fail - Atom Boiler

Fail Sludge in Tank

Fail Boiler No. 1

Fail Flue Gas Leak

Fail Multiple Probs.

Fail

Good Boiler B

Fail Boiler B

Good Prior 5"/70

Fail Prior 5/70

Key Punch Error

74

Z5

1

13

6

41

I0

5

0

13

70

Z5

I

14

7

35

I0

5

0

i0

LJ
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TABLE 5. 7

SUMMARY OF REPRESENTATION AND PERFORMANCE

Case No. Dim. 40 Z9 Z0

LEARN
m

Q

O-Q

Z_/"v

PROOF

BLR Z

m

Q

0-_

z /v

n

Q

BEFORE 5/70

Q

Ca

•99977

•00018

.4Z

.998Z

•0011

1.0

.989

•005

.3Z

•980

•03

.81

•9976

•0016

•48

.990

•007

.91

•973

.01

.31

•9Z5

.06

I. 20

•988

•008

.63

•963

•027

.80

.94

.02

,36

•835

.06

.93



FIGURE 5,1 -,TYPICAL DATA HISTORY (AUGUST .!4,!070)
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FIGURE 5.3 - VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY

FOR 50 MEASUREMENT BASE
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FIGURE .5.4 - FIRST OPTIMUM FUNCTION ORIGINAL 50 MEASUREMENTBASE
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FIGURE 5.5 - SECOND OPTIMUM FUNCTION ORIGIGINAL 50 MEASUREMENT BASE
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FIGURE 5.6 - COMPARISON OF TYPICAL DATAHISTORY AND TWO-TERM

RECONSTRUCTION
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FIGURE 5. 7 - COMPARISON OF TYPICAL DATA HISTORY AND FIVE-TERM

RECONSTRUCTION
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FIGURE .5.8 - COMPARISON OF TYPICAL DATA HISTORY AND TEN-TERM

RECONSTRUCTION
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FI GURE 5.9 SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED

FOURIER SERIES REPRESENTATION OF CASES USED TO DERIVE ORIGINAL

50 MEASUREMENT BASE
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FIGURE .5.10 - SCAITER PLOT OF FOURTHAND FIFTH COEFFICIENTSOF GENERALIZED

FOURIER SERIES REPRESENTATIONFORLEARNING DATA USED IN THE

ORIGINAL 50 MEASUREMENTBASE
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FIGURE 5. 11

FOURTHOPTIMUM FUNCTION ORIGINAL 50 MEASIIRFMFNTRASF
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FIGURE 5. 12

FIFTH OPTIMUM FUNCTION ORIGINAL 50 MEASUREMENT BASE

o

o

O
o

I:I
o

,rl

,ta
,r-I

o
L)

@._

O.ql@

Q.O

-41._1

-0.04)

E | GEN FUNCT I ON NP5

I
' ---- -----_ i

I

I
I
I

_ i

!
I

!
i
i
I
I
1

" Ill :_J-"
. . Ill

tll .....
Ill ,..

tm oc r l_T2

-97-

W
!

i
1

l@ 2O Im 4O SO o0

Ty

INDEXING VARI Alml.£ -_o



FIGURE 5.13 VARIATION OF INFORMATION RETAINEDWITH DIMENSIONALITY FOR

REFERENCE50 DIMENSIONAL BASE
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FIGURE 5. 14 - FIRST OPTIMUM FUNCTION FOR REFERENCE50 DIEMNSIONAL BASE
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FIGURE5, 1.5
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FIGURE 5.16

SCAITER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED FOURIER

SERIESFOR CASES USED TO DEVELOP REFERENCE _0 MEASUREMENT .BASE
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FIGIIRF 5 27 -
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FIGURE 5 18 - SIXTH OPTIMUM FUNCTION FOR REFERENCE50 MEASUREMENT BASE
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FIGURE5. 19
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FIGURE 5.20 - FOURTH OPTIMUM FUNCTION FOR REFERENCE 50 MEASUREMENT BASE
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FIGURE 5.2] - EIGHTH OPTIMUM FUNCTION FOR REFERENCE511MEASUREMENT BASE
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GURE5. 22 - NINETEENTHOPTIMUM FUNCTION FORREFERENCE50 MEASUREMENTBASE
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FIGURE 5. 26

VARIATION OF INFORMATION RETAINEDWITH DIMENSIONALITY FORTHE,?,1MEA-

SUREMENTBASE CONSTRUCTEDFROMTHE CASES BELONGINGTO SCATTERPLOT
GROUP 2
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F I GURE5. 27 VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY FOR
REFERENCE81 MEASUREMENTBASE
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FIGURE 5.30 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING INCIPIENT
FAILURES USING 30 DIMENSIONS
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FIGURE 5.31 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING INCIPIENT

IN-PLANT FAILURES USING 4n DIMENSIONS
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FIGURE 5.32 RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING FIELD

PROBLEMS USING 24 MEASUREMENTS
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FIGURE .5.33 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING FAILURES

OF THE ATOMIZING BOILER USING 38 DIMENSIONS
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FIGURE 5. 34 RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING FAILURES

IN SCATTER PLOT GROUP 2 USING 20 DIMENSIONS
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FIGURE 5.35 - VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY FOR .
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FIGURE 5. 37 - FIRST OPTIMUM FUNCTION 192 MEASUREMENTREFERENCEBASE
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FIGURE 5. 38 - SECONDOPTIMUM FUNCTION 192 MEASUREMENTREFERENCEBASE
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FIGURE5 3Q

RELATIVEIMPORTANCEOFOPTIMALDIRECTIONSFORDETECTINGINCIPIENT FAILURES
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FIGURE 5. 4Z-RELATIVE IMPORTANCEOF MEASUREMENTSFOR40 DIMENSIONAL UNI-
VERSAL DETECTIONALGORITHM
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FIGURE 5. 43 - RELATIVE IMPORTANCEOF MEASUREMENTSFOR29 DIMENSIONAL
UNIVERSAL DETECTIONALGORITHM
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FIGURE .5.44- RELATIVE IMPORTANCEOF MEASUREMENTSFOR20 DIMENSIONAL
UNIVERSAL DETECTIONALGORITHM
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F'IG,URE 5.46- SCATTERPLOTOF FIRSTAND SECOND COEFFICIENTSOF (]ENERALIZED
FOURIERSERIESREPRESENTATIONOF NON-FAILINGTESTCASES
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FIGURE .5.47
SCATTERPLOTOF FIRST AND SECONDCOEFFIC.IENTSOF GENERALIZEDFOURIER SERIES

REPRESENTATIONFORTESTCASES IN WHICH HEATING PLANTFAILURES OCCURRED
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FIGURE 5.50
SCATTERPLOTOFFII_STAN,.D.SECONDCOEFFISiENTSOF GENERALIZEDFOURIER
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6.0 DIAGNOSTIC ALGORITHMS

The previous section showed that it would be feasible to develop algorithms to

detect incipient failures for the KSC central heat plant. Thus, it becomes

meaningful to determine if this same data can be used to diagnose what com-

ponent or region of the central heat plant is about to fail. Although success of

a diagnostic algorithm is not absolutely essential to establish the usefulness of

ADAPT algorithms for demand maintenance of a system such as this, the

availability of diagnostic algorithms will considerably improve this capability.

Diagnosis can in principal be performed in two ways: I) develop detection

algorithms for detecting specific faults versus all other cases, and 2) if one

has already performed the detection, diagnostic algorithm is a classification

algorithm separating the particular failure of interest from all other failures.

Since it is quite likely that many failures will have much in common, the

prognosis of successfully developing diagnostic algorithms is better for the

second approach, that is separating a particular failure from all other failures

than for the first approach. This section will show the feasibility of developing

diagnostic algorithms of this second kind based on the central heat plant data

similar to that used to develop a diagnostic algorithm in the preceding section.

Since a separate diagnostic algorithm must be developed for each failure mode,

the cost of developing the family of diagnostic algorithms is considerably

greater than the corresponding cost of developing the detection algorithm.

Furthermore, the feasibility of the predictive preventive maintenance system

is not as critically dependent on the ability to develop a particular failure diag-

nostic algorithm as it was on the ability to develop algorithms to detect incipient

failures. Thus, the feasibility demonstration will not include the derivation of

a complete set of operational diagnostic algorithms but will be limited to demon-

strating the feasibility on two typical failures. The feasibility will be demonstrated

based on the projected performance of the initial exploratory algorithm develop-

ment. The ability to achieve and improve on this projected performance was

demonstrated on the detection algorithms as described in the preceding section.

Although a similar demonstration of the optimization and proof testing of these

algorithms can be achieved from a technical standpoint, the task is more appro-

priate to the development of the predictive preventive maintenance system than

to the demonstration of the feasibility of this system.

In principal, it would not be necessary to develop a new base to develop the diag-

nostic algorithms. However, one might expect that in general the performance

will be slightly better if the base used to develop a given diagnostic algorithm has

been derived for that specific task and that the results achieved will more typical

of those that would be expected for the development of diagnostic algorithms for

different types of failures if a new base were developed for each of the two failure

modes being investigated.
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The first base which was developed was that to be used for diagnosing the failure
of Boiler No. i. This base was derived using a total of 50 cases, 13 failures of
Boiler No. I, and 37 of other types of failures. All of the analysis for the diag-
nostic algorfthms were accomplished using all 19Z measurements. Figures 6.1
thru 6.4 present principal characteristics of the representation for the base used
for diagnosing the Boiler No. I failure. These figures may be compared with
Figures 5. 35 thru 5. 38 which presented similar information for 192 measurement
base derived for separating good cases for incipient failures. Comparison of
Figures 6.1 and 5.35 shows that the representation for the diagnostic cases is
easier than for the detection cases. This would be expected from the fact that
the diagnostic base only includes failure type cases and need not account for the
variation associated with good cases. Some of this difference is also probably
due to the fact that the diagnostic base was constructed using half as many cases
as the detection base.

Figure 6. Z presents the scatter plot for the detection of Boiler No. 1 failures.

Note that on this scatter plot the numeral's I indicate those cases for which

Boiler No. 1 failure occurred and the Z's indicate other types of failures. Thus,

b0th the l's and Z's would appear as 2's on Figure 5.36. In comparing Figures
6. 2 and 5.36 the re_der is cautioned that a double mirror image has occurred,

that is both the first and second optimum functions= have selected opposite signs

for the base derived for detecting Boiler No. 1 failures. When this is accounted

for the scatter plots are indeed quite similar. This is in agreement with the

results that are obtained by examining Figures 6.3 and 6.4 and comparing them

with Figures 5. 37 and 5.38. In general, we see that the first optimum functions

are very similar except that the sign is reversed. There are no qualitative dif-

ference between the first optimum functions of the boiler diagnostic base and the

universal detection base and no significant quantitative differences. Again, when

the sign is accounted for, careful examination of the second optimum function

presented in Figures 6.4 and 5.38 shows only four significant qualitative dif-

ferences between these two optimum functions. These differences are the appear-

ance ofspikes associated with variables 46, 60, 93, and 106 which appeared in

the base for diagnosing Boiler No. 1 failures. Referring to Table 2.5 we see

that these variables correspond to the return temperature associated with zorie Z,

the 1Z-hr. average of Boiler No. 1 outlet temperature, the 1Z-hr. average of

the zone 2 return temperature, and the soft water meter. Recalling that these

variables are important to failure diagnosis, it is not surprising that a base con-

sistent only of failure cases would be more likely to include these variables earlier

in the representation. This also suggests that further improvement in the diag-

nostic algorithms developed in Section 5 might be achieved by using a failure base

rather than a combined base for deriving the universal detection algorithm. This

is another possibility which might be investigated as part of the development pro-

gram but which was not necessary to establish feasibility.

Figures 6.5 thru 6.8 present the corresponding information for the base used to

derive the algorithm for diagnosing failures in the atomizing steam boiler. This

base was derived using 75 cases, 35 of these cases represented failures of the
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atomizing steam boiler and 40 of the cases represented other failure types.

Comparison of the information energy curves presented in Figure 5.35, 6. 1,

and 6. 5 shows that the difficulty of representation is approximately equal for

both of the bases utilizing only the failure data. But both of these (i. e. Figures

6.1 and 6.5) are considerable easier to represent than the combined base of

good cases and failure cases. Figure 6.6 presents the scatter plot presenta-

tion of the cases used to develop the algorithm for diagnosing atomizing steam

boiler failures. On this figure the numerals 1 represent those cases for which

atomizing steam boiler failures occur and numerals Z are other failure cases.

Comparison of Figures 6. 2 and 6.6 shows that the scatter plots for these two

bases are quite similar.

Comparison of Figures 5.37, 6.3, and 6.7 shows that there is still no signi-

ficant variation both quantitative or qualitative between the first optimum functions

of all three of these bases. However, comparison of the second optimum function

shown in Figures 5.38, 6.4 and 6.8 shows that there is variation in a few variables

between the base used to detect the atomizing steam boiler failure and the base

for detecting the Boiler No. 1 failures. In particular, the soft water make-up

feed meter measurement is the only measurement of the four measurements which

differed between the Boiler No. 1 diagnostic base and the universal detection .base

which is still important in the atomizing steam boiler base. With the exception

of the remaining three measurements and noting the mirror image effect, one

sees that the second optimum function of the two diagnostic bases is still very

similar and in fact in a qualitative sense much more similar than the universal

detection base relative to either or both of the diagnostic bases.

The relative importance vectors for the two diagnostic algorithms derived on

these bases, that is the algorithms for diagnosing Boiler No. 1 failures versus

all other failures, and the algorithm for diagnosing atomizing steam boiler fail-
ures versus all other failures are presented in Figures 6.9 and 6.10. These

figures provide a basis for reducing the number of measurements to be used for

the diagnosis and thereby beginning the optimization process of the diagnostic

algorithms. They also provide a basis for understanding the failure mechanisms

and thus improving both the system and its maintenance. The reduction of the

number of measurements would be a part of the development program to imple-

ment the predictive preventive maintenance approach. The analysis of the relative

importance vectors to understand the failure mechanisms of the system although

extremely useful are beyond the scope of the present study. However, these
plots in conjunction with the corresponding relative importance plots presented

in Section 5 provide the reader with the information required to carry out this

analysis. The load on the system is very important to both the universal detection

algorithm, the atomizing steam boiler detection algorithm, the atomizing steam

boiler diagnostic algorithm, and the Boiler No. 1 diagnostic algorith m . This is

shown by the fact that the amount of rainfall, the temperature and the maintenance

on the sump pumps tend to be important for all of these algorithms. Figure 6.9

shows that both the 3-day and the 10-day rainfall are extremely important to
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diagnosing Boiler No. 1 failures. However, we note that the 3-day rainfall

appears as a negative parameter and the 10-day rainfall as a positive para-

meter. This implies that Boiler No. 1 failure tends to occur later after a
rain storm than the other failures. The fact that each of these variables has

approximately equal absolute magnitude also suggests that since it is the dif-

ference between these rainfalls which actually enters the diagnostics that the

actual relative importance of these two variables taken together may be signi-

ficantly less than suggested by the initial cursory examination of Figure 6.9.

Considerable information should be available from detail analysis of these

figures and this is recommended as a further study program.

The performance of these two algorithms is summarized on Figure 6.11. The

Boiler No. 1 diagnostic algorithm indicated by the triangles was developed at

30 and 15 dimensions. Both of these algorithms projected to the same per-

formance indicating that a minimum of significant information is lost in the

reduction from Z0 to 15 dimensions. Examination of the relative importance

spectrum for these algorithms indicated that this performance should continue

clear down to 13 dimensions. The projected performance is obtained by ex-

tending the algorithrp track with a fixed slope until the ratio of number of cases

to number of dimensions is approximately 6. This yields an expected performance

for the final Boiler No. 1 diagnostic algorithm of approximately . 49 which co, r-

responds to a probability of error of approximately 1 _n 100.

The diagnostic algorithm for the atomizing steam boiler which was developed

at 35 and 20 dimensions is also shown by the squares on Figure 6.11. This

algorithm projects to considerably different performances for the 35 and 20

dimensional algorithm. This indicates, as does the relative importance spectrum,

that significant information is lost as one decreases from 35 to 20 dimensions.

For this reason the performance estimate has been based on projecting the per-

formance of the 35 dimensional algorithm. This position appears to be sufficiently

far from the random separations that the performance projection should be satis-

factory. Project to performance parameter has a value of approximately .37

which corresponds to a probability of error between .001 and .005.

The trade-off between detection probability and false alarm rate which can be

expected for these two algorithms is presented in Figure 6. 23. Examination

of this figure shows clearly that both of these algorithms have a performance

which is completely adequate for application to the predictive preventive main-

tenance schemes outlined. Even without introducing techniques of multiple

applications one finds that if false alarm rates of 1 in 100, the detection proba-

bility are of the order of 98 to 100%. The performance shown on Figure 6. 2.3

has been projected in exactly the same manner as performance for the universal

detection algorithm was projected in Sections 5.2 and 5.3. These projections

were verified by the tests presented in Section 5.4 and thus it is believed that

the performance shown in Figure 6. 23 can be taken as a demonstration of the

feasibility of utilizing the ADAPT programs to derive the diagnostic algorithms

required for the straight forward implementation of a predictive preventive main-

tenance system.
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The Boiler No. I diagnostic algorithm provides an excellent example for

illustrating the effect of the Fisher weighting parameter on the trade-off be-

tween the detection probability and false alarm rate. Experience has shown

that the performance parameter _0"j%/ is relatively insensitive to the change

in the Fisher weighting parameter (See Ref. 9). Experience has also shown

that the parameter Z/_Q-_ which for the special case of _- iY'_., is identical

to the performance parameter is quite sensitive to the Fisher weighting parameter.

Thus, when projecting the performance of an algorithm to the case of 0_i = _ ,

the projection must always be performed utilizing the performance parameter

and calculating the corresponding value of V. This is illustrated by Figure 6.12

where the upward facing triangles present the performance trade-off for the

Boiler No. I detection algorithm for the case of 6"_- _. The downward facing

triangles present the same curve for the case of _ = 3, 3 _-/ which can be
obtained from the same set of data as the upward faclng triangle curve by simply

changing the value of the Fisher weighting parameter. Although the downward

facing triangle curve at first appears to have poorer performance than the curve

for equal standard deviations, this is a result of the linear scale for detection

probability. In fact, the downward fazing triangle curve has significantly better

detection probabilities for false alarm rates greater than .01. For example

the detection probability at a false alarm rate of .04 is .9998 for the down-

ward facing triangles and only .997 for the upper triangles andat .01 the down-

ward facing triangles have a detection probability of "9999993 as compared to

•99994 for the upward facing triangles. Thus the Fisher weighting parameter

for the downward facing triangles is better for those cases where false alarm

rates are greater than .01. The selection of the proper Fisher weighting para-

meter as a function of false alarm rate is discussed in more detail in Appendix

C.
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FIGURE 6.i -VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY FOR
FOR BOILER NO. I DIAGNOSTICS BASE
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FIGURE6. 2 - SCATTERPLOTOFFIRSTAND SECONDCOEFFICIENTSOFGENERALIZED
FOURIERSERIESREPRESENTATIONOFDATAUSEDTO DEVELOPBOILER
NO, I DIAGNOSTIC:ALGORITHMS
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FIGURE 6. 3
FIRST OPTIMUM FUNCTION FOR BOILER NO I DIAGNOSTIC ALGOI_ITHM BASE
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FIGURE6.4
SECOND OPTIMUM FUNCTIONFOR BOILERNO. I DIAGNOSTICALGORITHM BASE
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FIGURE 6.5
VARIATION OF INFORMATION ENERGYRETAINEDWITH DIMENSIONALITY FOR
ATOMIZING BOILER DIAGNOSTIC BASE
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FIGURE 6.6
SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED FOURIER SERIES
REPRESENTATION FOR LEARNING CASES USED IN DEVELOPING ALGORITHM FOR DIA-
GNOSING ATOMI71NG STEAM ROll FR FAILURES
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FIGURE 6. 7
FIRST OPTIMUM FUNCTION FORATOMIZING STEAM BOILER DIAGNOSTIC BASE
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FIGURE6.8

SECONDOPTIMUMFUNCTIONFORATOMIZING STEAMBOILER DIAGNOSTICBASE
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FIGURE 6. 9 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DIAGNOSING FAILURES
IN BOILER NO. I USING 20 DIMENSIONS
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FIGURE 6.I0 - RELATIVE IMPORTANCE oF MEASUREMENTS FOR DIAGNOSING FAILURES

iN THE ATJMIZINC, STEAM BOILE,2 iJSING 35 DIMENSIONS
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7.0 TIME TO FAILURE ALGORITHM

When both the detection of an incipient failure in the system and the diagnosis

of the failure has been completed, the remaining question is when will the

failure occur. If this information is also available, the demand mainten-

ance system cannot only alert the maintenance people that the failure will

occur, define where the failure will occur, but also can schedule the correc-

tive action to cause the least inconvenience to both the maintenance personnel

and the users. The development of algorithms to predict the time at which

failure will occur is the most difficult of the three types of algorithms con-

sidered. The major reason for this difficulty is the fact that a great deal of

data is required for any given failure mode before one has sufficient informa-

tion to derive such an algorithm. The compensation for this disadvantage is

that it is exactly this failure that is most likely to occur. One series of

failures for which such a set of data is available is the failure of the atomiz-

ing steam boiler. For this reason we have selected the atmozing steam boiler

as a case to demonstrate the feasibility of deriving time-to-failure algorithn_s

for those failures occurring sufficiently often to provide an adequate data

base.

A separate base was constructed to be used for the derivation af the rime'to'

failure algorithm. This base was constructed using the Z9 cases describing

the Kennedy Space Flight Center central heating plant prior to the failure of

the atomizing steam boiler. These Z9 cases were processed through the

ADAPT programs. The effect of dimensionality on this rePresentation of these

Z9 cases is shown in Figure 7. I. The representation is nearly complete with

only 15 terms. The first two of the optimum functions derived, using the time

to failure data base are shown in Figures 7. Z and 7.3. When compared with

Figure 5.37 and Figure 5.38, the most striking difference is the disappear-

ance of the steam pressure for atomizing boilers A and B from these two

optimum functions. This implies that for the atomizing steam boiler failures

there was far less variation in the steam pressure associated with the atomiz-

ing boilers. If these two variables and their I2-hour average are deleted

from Figure 5.37, the remainder of the variation is remarkably similar to

that shown by Figure 7. Z. The same is true for the second optimum function

given in Figure 7.3.

Figure 7.4 presents a scatter plot representation of the atomizing steam

boiler cases. This scatter plot shows four individual groups representing

the four specific failures for which time-to-failure information was avail-

able. Examination of the distribution of these failures on the scatter plot

represented in Figure 7.4 in comparison with the scatter plot for the

universal detection base presented in Figure 5.36 shows that the failures of

the atomizing steam boiler represent a reasonable cross section of the varia-

tion displayed by the entire data base.
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Time-to-failure algorithms were developed using twelve and nine dimensions.

The relative importance spectrum for these algorithms is shown in Figure 7.5.

This figure shows that the most important dimension for the time-to-failure

algorithm is dimensio,1 No. 9. It also shows that there is significant informa-

tion in the eighth, tenth, and eleventh optimum functions.

Figure 7.6 shows this ninth optimum function. The most important variables

to this function are the rainfall during the past hour, the change in the boiler

No. 1 flow, the number of gallons of fuel used, the change in flow for Zone Z

makeup feed water meter and the number of gallons of fuel used by the atomiz-

ing steam boiler. Thus in part, this function is made up of a contrast between

the amount of energy used by the boiler, the heating load being carried by the

boiler and the amount of fuel being supplied to the atomizing steam boiler.

This is a reasonable collection of information to make a significant contribution

to the time-to-failure. The track of this algorithm on the performance map is

shown in Figure 7.8. The two algorithms were presented by the circles on the

solid line which shows the effect of dimensionality on the performance of this

algorithm° The curvature of this line is based upon the relative importance

spectrum shown in Figure 7.5. That is, very little information is lost as one

decreases from twelve to eleven dimensions, a significant and approximately

equal amount is lost in decreasing from eleven to ten and ten to nine measure-

ments. Once one decreases below nine measurements, a very large amount of

the information required predicting the time-to-failure is lost.

Figure 7.8 presents a comparison of the estimated time-to-failure with the

actual time-to-failure for the 1Z-dimensional algorithm. The abscissa on

this plot is the actual number of hours prior to the occurrence of the failure

for that particular case and the ordinant is the time-to-failure as estimated

using the time-to-failure algorithm presented in Table 2.4. Since this

algorithm only has a ratio of number of cases to number of dimensions of about

z-i/z, one might expect this performance to be degraded somewhat. However,

the performance indicated for this algorithm is a one-sigma accuracy of six

hours. This accuracy is illustrated by the interrupted line of Figure 7.8.

The accuracy which might be expected of a final algorithm should certainly

be greater than that achieved by the 9-dimensional algorithm which was a

one-sigma error of 9 hours. Thus, one can be quite confident that the kind

of failure for the atomizing steam boiler can be predicted to within 6 to 9

hours and probably closer to 6 hours of the time-to-failure 7Z hours in advance

of the failure. Figures 7.8 and 7.9 present the relative importance vectors

for the 9 and 1Z dimensional time-to-failure algorithms respectively. These

figures show the importance of each of the measurement to predicting the

number of hours before failure will occur. As would be expected, many of

the variables important to optimum function Na 9 are also important in the

relative importance vector. Furthermore, the relative importance vectors

for the 9 and IZ-dimensional case are quite similar. This is encouraging in

that it leads one to believe that the mechanisms upon which the algorithms

are based are generally similar. Clearly, the 12 dimensional algorithms

illustrated in Figure 7.9 must include some elements pertinent to the
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prediction of time-to-failure which are not included in the 9-dimensional
algorithm. Examination of these two figures shows that in general the
higher dimensional algorithm does not rely as heavily on the rain flow,
the IZ-hour average temperature or the flows in Zone Z.

Although the successful development of this time-to-failure algorithm for

the atomizing steam boiler is not sufficient to insure that time-to-failure

algorithm can be derived for all failures which are identified, it does show

the time-to-failure algorithms are feasible and can be derived for at least

some of the failure modes. The system utilized to implement these

maintenance algorithms must be designed to operate both with and
without this time-to-failure information.
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FiUdikE/. 1 - VARIATION OF INFORMATION RETAINEDWITHIN DIMENSIONALITY FOR
TIME TO FAILURE BASE
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FIGURE7.3 - SECONDOPTIMUMFUNCTIONTIMETOFAILUREBASE
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FIGURE 7. 4 - SCATTER PLOT OF FIRST TWO COEFFICIENTS OF GENERALIZED FOURIER

SERIES REPRESENTATIQN OF CASES USED TO DEVELOP TIME TO FAILURE ALGORITHf
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FIGURE 7. 5

RELATIVE IMPORTANCE OF OPTIMUM DIRECTIONS TO PREDICTING TIME TO FAILURI:
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FIGURE 7. 6 - NINTH OPTIMUM FUNCTIONTIME TO FAILURE BASE
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FIGURE 7.7 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR PREDICTING TIME

,, , TO FAILURE USING 8 DIMENSIONS
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FIGURE 7.8 - RELATIVE IMPORTANCE OF MEASUREMENTS TO PREDICTING TIME TO
FAILURE USING 12MEASUREMENTS
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.%PPENDIX A

FEATURES OF ADAPT ANALYSIS

The unique aspect of the ADAPT approach to empirical data analysis is pre-

ceding the analysis with the derivation of the optimal representation for the

particular data set. The ADAPT programs provide a unique capability for

determining this optimum representation for large data sets. However,

regardless of the size of the data set, the availability of this optimum repre-

sentation provides many significant benefits to any further empirical analysis.

These benefits include: I) definition of which variables dominate the variation,

Z) ordering of the data by its general usefulness for extracting information,

3) reduction in the computation required to perform further analysis, 4) re-

duction in the amount of learning data required to perform any given analysis,

5) an improved ability to establish performance and validity criteria, and

6) the ability to perform special functions such as clutter subtraction and

extrapolation.

The availability of the optimum functions for representing any given data set

is analogous to having the governing differential equations for a classical physics

problem. These optimum functions provide information regarding the nature of

the physics which govern the phenomena associated with this data. In particular,

these functions will define exactly where the greatest and most highly correlated

variation from case to case occurs. This information can be extremely useful

in selecting data to be used for the analysis and in understanding the mechanism

governing the phenomena which produced this data.

In addition to simply having the optimum functions for representing the data,

these functions are ordered such that each function explains successively less

variation in the data. This provides the user with a capability to reject variables

in an intelligent rather than a random manner, if the resources or available

learning data require the use of fewer dimensions than would naturally be used

to describe the data. This ordering allows one to throw away those variables"

which explain the smallest amount of variation and therefore in general should

be least useful to any analysis. Although it might be more desirable to be

selective based on the particular analysis to be performed, this is not usually

possible until after the analysis has been performed, when it is obviously no

longer useful. Thus, it is almost axiomatic that the apirori rejection of data

for a particular analysis cannot be based on that particular analysis, so the

rejection based on explained variation is an attractive approach to eliminating

data when realities of the resources or available learning cases makes such an

elimination nece s sary.

Regardless of any prior decision to reduce the dimensionality, the ADAPT

approach to any real problem will automatically lead to a significant reduction
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in dimensionality. When the information energy curves which are produced

by the ADAPT programs are examined, it is almost always possible for the

analyst to select some dimensionality after which it is inconceivable that

further useful information is incorporated in the data. This criteria alone

usually results in a reduction of dimensionality of more than an order of

m a gnitude.

A reduced dimensionality obviously allows one to perform computations with

smaller computer capabilities. Furthermore, the orthogonality of the optimum

representation also provides simplifications in the computation. For example,

in the optimal ADAPT space one can in some cases derive the Fisher discrim-

inant without inverting the covariance matrix. This combination of reduction

in quantity of computation required and simplification due to orthogonality also

makes it feasible to update classification and regression algorithms in real

time for cases where this might otherwise be impossible.

A more significant aspect of the lower dimensionality of the learning space

follows from the requirement that the amount of learning data be large com-

pared to the dimensionalty of the learning data. This requirement arises

from the situation analogous to fitting a third order polynomial through a

series of points. If the third order polynomial is to be fitted to three points,

it will always fit perfectly and no physical relationship need be involved. How-

ever, if the third order polynomial is to fit a hundred points well then one

knows that this third order polynomial must be related to the data in some

physical manner. The same is true for empirical analysis in general. If

the number of dimensions of the learning space is equal to the number of learn-

ing cases one can expect most empirical algorithms to provide a perfect fit to

the learning data. However, this fit is normally based on differences between

the population and the sample statistics and is not based on the physics of the

problem. Experience has shown that the number of learning cases required to

derive an empirical algorithm varies from Z to 6 times the number of dimensions

of the learning space. Thus, the usual ADAPT reduction of an order of mag-

nitude or more in dimensionality of the learning space translates immediately

into an equivalent reduction in the requirement for learning data. Since obtain-

ing learning data is one of the most expensive aspects of empirical data analysis,

this attribute of the ADAPT approach is often sufficient by itself to make the

difference between feasibility and infeasibility of solving a given problem.

The ADAPT representation also provides an opportunity for establishing a

necessary, although not sufficient, validity criteria. Validity criteria provide

a method of determining whether a particular test case is from the same popu-

lation as the learning data, and therefore determine the validity of applying

the algorithms derives on the learning data to that particular test case. The

ADAPT validity criteria consists of comparing the length of the test data vector

in the original data space and in the ADAPT optimum space. If this transforma-

tion from the original data space to the optimum space results in a shortening
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of the test data vector by a factor considerably greater than the shortening
which the learning data vectors suffered, one has an indication that the test
data and learning data are from different populations. In addition to providing
this validity criteria, the ADAPT programs have been <lesigned to calculate

performance criteria as part of the learning process. These performance

criteria provide the analyst with a basis for immediately evaluating how well

he can expect a given algorithm to perform on test data. The ADAPT programs

provide the analyst with both the performance criteria and the experience factor

required to determine whether the algorithm derived is overdetermined. If

the algorithm is overdetermined, the analyst must adjust the dimensionality

of the problem or increase the quantity of learning data to derive a physically

meaningful algorithm.

The ADAPT approach of obtaining the optimum representation of the data prior

to performing the analysis introduces the capability to perform clutter sub-

traction on the data prior to performing the analysis. The clutter subtraction

can be used to eliminate any characterizable aspect of the signature from the

data histories. This is accomplished by subtracting the coordinate directions

corresponding to those characteristics to be eliminated from the space prior

to the optimization procedure. Another unique capabilSty resulting from the

optimum representation step is the ability to do an extrapolation making use

of both historical data from previous data histories and the available portion

of any given data history. Conceptually this is equivalent to utilizing historical

information to guide the interpolation over missing data points.

In addition to these advantages which accrue from the optimal representation,

the ADAPT programs have been operational since approximately 1965. They

have been applied to a greatmany different problems, and during this period

part of the practical pit falls associated with empirical analysis have been

encountered, overcome and the programs improved to take advantage of this

experience. This experience has also provided Avco with the understanding

of what diagnostic outputs are required to enhance the ability of the analyst to

develop the required algorithms, and to provide the data necessary to reintroduce
the physics to the problem at as many points as possible. The key areas where

the physics may be reconsidered as part of the analysis are: 1) at the time of

data selection and preprocessing decisions; Z) after the development of the

optimum representation,it may be examined to insure that the variation is con-

sistent with the expected variation based on the physics of the problem; 3) after

the development of the algorithm, the relative importance vector may be examined

to determine if the variables which appear important to the decision are con-

sistent with the analyst's understanding of the physics and the relative importance

spectrum may be examined to determined if the difficulty in obtaining the algo-

rithm is consistent with the difficulty which would be expected based on the physics

of the problem.

In summary, the capability to find the optimum representation for large data

vectors has been combined with many years of experience in using this representa-

tion as a preliminary step preceding empirical data analysis. This unique
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combination has been used to prepare a set of computer programs for per-

forming empirical data analysis. These programs provide the user with a

fast and economical way to generate simple empirical algorithms for

classification, regression, clustering and extrapolation and/or analysis

of any given set of learning data.
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APPENDIX B

OPTIMAL ORTHOGONAL EXPANSION FOR TWO FUNCTIONS

We wish to carry though the ADAPT expansion of each of two given functions in the

series of the optimal orthogonal functions defined by these two functions, as

described in the Introduction.

Suppose we are given the functions ul(t)_ and u2(t ) of the ihdependent variable t_

over some domain tI _ t _ t2. Let the functions be normalized, so that

Then the only parameter is the product integral

the last inequality being Schwarz' inequality for normalized functions.

First we construct an orthonormal set of 2 functions Vl, v 2 from the given ones

by the Gram-Schmidt procedure. _ These functions are easily seen to be

-,,,-_,<, >

We now find the expansion coefficients of Ul, u2 in a series of Vl, v2:

'_Note that the Gram Schmidt procedure represents the continuous function Ui(t)

by two discrete compon'ents, which may be treated similar to the components

of the ADAPT data vectors.
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The optimal orthogonal functions are now obtained by finding the eigenvalues

and eigenvectors _ of the two-by-two matrix

(the factor in front corresponds to weighing by dividing by the number of functions_

in our case 2.) They are easily found to be

X,-_-'(1 l I)) :-' t1-J I)

The eigenvectors are the expansion coefficients of the optimal orthogonal functions

hl, h 2 in a series in Vl, v2, i.e._

Returning to the original u functions we find the associated optimal functions

to be

and the expansions of the u functions in them are
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It is sufficient to discuss the case of_ 0 because if _¢ O, a change in the sign

of u2 returns_to the first case. We note that the optimal function h I is proportional

to the average of the input functions. The average is intuitively the best .single

function to represent two functions, so _e see the best single function is associated

with the larger eigenvalue _[. The optimal function associated with _2 is

proportional to the difference of the given functions.
J,

We also note that

The decrease inthe eigenvalue from the first to the second is the product integral

of the two functions. If the functions are closely correlated one would expect

to be near unity, and _ wou_d be much less than _| But if the functions are

nearly uncorrelated one would expect_ to be small_ and there is only a slight

decrease in the eigenvalue_ going from the larger to the smaller. Thus the rate

of decrease of eigenvalues can be associated with the degree of correlation of

the input functions.
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APPENDIX C

PERFORMANCE EVALUATION OF FISHER DISCRIMINATE

1.0 INTRODUCTION

The task of developing useful empirical algorithms may be divided into the

following three parts:

.

2.

o

Generation of the algorithms,

Performance evaluation of the algorithm,

measurement for the algorithm), and _"

(i.e. a goodness

Establishment of the validity of applying the algorithm

to the test data.

In the ADAPT programs, the most common technique for developing empirical

c_a_s_f_c_tion algor_hr_s "_ _be u_se of t.be Fisher l_,_ear di._Cri.nimant. This

has been found to be one of the most useful techniques for generating classi-

fication algorithms. It is. applicable to non-Gaussian data. For Gaussian data

it is possible to define v.arious optimum classifiers including various maximum

likelihood separations, optimum quadratic classifiers, etc. However, experience

has shown that Gaussian data is very rare in nature. For non-Gaussian data

linear classifiers have the advantage that for sufficiently large data spaces the

dot product operation normally falls within the criteria for application of the

Central Limit Theorem and therefore produces projection values which have

Gaussian distribution even when the input data is not Gaussian. This phenomena

allows one to significantly improve the performance evaluation of the algorithm.

Another adval_tage of the linear classifier is tile extremely simple format making

it easy to implement either as a subroutine in a larger program for use on a

digital computer, or in a special purpose computer.
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The classical approach to establishing the validity of applying a given empirical

algorithm to test data is to reserve a certain portion of the available data as

test cases. The algorithm is then developed using only that portion of the

available data designated as learning data and then applied to the independent

proof data. When the amount of data available is limited, which is usually the

case, one technique which is often used is that known as "holding one out"

In this technique one case is removed from the data set and the remaining

cases used to develop the algorithm. The algorithm is then tested on the one

remaining case and its performance noted. This case is then added back into

the learning set and a different case withheld and the procedure repeated. Since

in general algorithm development is considerably more expensive then testing,

this aDoroach is more expensive to imr)lement than the approach of retaining

a large proof test data but it does allow one to perform the evaluation using a

smaller set of data. It should be pointed out that this classical approach is neither

necessary nor sufficient in a rigorous sense for ensuring the applicability of the

algorithm to a new set of data. In particular, care must be exercised in selecting

the independent proof sample sucl_ _,hat its selection reasonably models the selection

of the entire sample from the population or universe of data.

The ADAPT programs in addition to providing the capability to implement this

classical approach to establishing the validity of applying the algorithm to the

test data, also utilizes a validity criteria to test each individual history for

similarity to the learning data. If the test case is not sufficiently similar to

the learning data then one cannot feel confident in applying an algorithm derived

on the learning data to this particular test case. The ADAPT measure of similarity
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is the relative reduction in explained variation as one proceeds from the

original data space to the optimum ADAPT space for the test data case as

compared with the learning data cases. Clearly it is necessary, but not

sufficient, that the test case be adequately represented in the ADAPT base

derived from the learning data for any empirical algorithm to be valid. The

ADAPT programs furnish the user with information to judge the degree of

similarity which is required between the learning and test data. The ADAPT

programs generate as part of the algorithm development a relative importance

spectrum which defines 'how much of the explained variation is required to

develop a meaningful algorithm. One criteria is that the representation of

the test case on the learning base must explain at least as much variation as

explained by the first "L" terms of the representation. Here "L" is defined

as the maximum nurr_ber of term._ required to include all of the important terns:

a defined by the relative important spectrum, for the particular algorithm being

analyzed. A simpler, but significantly less rigorous criteria which is often

used is that the minimum representation of the test case must be greater than

the minimum representation observed on any learning data. Clearly, this re-

quirement is a necessary but not s_tfficient requirement to ensure adequate

representation.

The preceding portion of this appendix has reviewed the. ADAPT approach to

the generation of algorithms and to the establishment of the validity of applying

the algorithm to a given test case. These have been quite general and are

applicable to a large number of linear discriminan_s. The remaining sections

of this appendix will develop procedures for evaluating the performance of
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separation algorithms derived using the Fisher discriminant. The great

majority of ADAPT classification problems are solved using the Fisher

discriminant. The procedures for defining its performance have been re-

fined considerably further than for other discriminants included in the ADAPT

programs. In general, these procedures could be used as a guide for establish-

ing performance measures for many of the other discriminants included in

the ADAPT programs. The following discussion is divided into two parts.

The first part, discussed in the next section, is'that of establishing a thres-

hold for the ADAPT algorithm to achieve a special goal. The second part,

discussed in ,_he last section, is the measurement of the performance of the

algorithm with a given threshold.

2 _ qF.TTTN_, (_F FI_I4ER THNESI-IOLDS

The approach to setting the threshold to be used to classify the projection

value obtained from applying the Fisher disc_riminant is based on the analysis

presented by Anderson and Bahadur in Reference I. Strictly speaking, this

analysis requires that all possible projection vectors produce Gaussian pro-

jections. In general, this is only true if the input data is itself Gaussian. For

the great majority of projection directions, in particular those directions which

are normally determined by the application of the Fisher discriminant, the

Central Limit Theorem will result in a Gaussian projection. Thus, although

the theory is not rigorously applicable, it is usually applicable to a large per-

centage of the possible projection directions when the data space is sufficiently

large to invoke the Central Limit Theorem. Thus, one suspects it may still
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be a valid guide as to the selection of the Fisher weighting parameter and

the threshold to be used with the Fisher discriminant. Experience with a

great variety of data has shown that this is indeed the case.

Reference 1 shows that if one desires to minimize total number of errors

made by the Fisher classification algorithm one should select the Fisher

weighting parameter, P, according to the following relation:

(1)

where r_ and _/J...._ _ are the standard deviation of the projection values of

the first and second classes respectively. Assuming that the origin has been

selected mid-way between the means of the projection values of each class

the threshold, TH, is given by:

C
(z)

Another criteria which one may wish to use, rather than minimizing the number

of errors, establishes an algorithm which will achieve a desired false alarm

rate. This special case is also discussed in Reference 1. Suppose one desires

a probability PN' that there will be no false alarms in Class 1 when N Class 1

cases are examined (i.e. no Class 1 cases will be classified as belonging to

Class Z.) The following relation will define the false alarm probability for Class

1, PI A : _: b]

(3)
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Solving this equation for the probability of false alarm for Class 1 under the

assumption that PN = is equal to 0.5 gives:

{4)

Once the desired false alarm rate has been defined, Reference 1 shows that

the proper Fisher weighting parameter to achieve this false alarm rate is

given by:

! (5)

where _-'_

function of the orobabilitv 1 - P_..
&' ,,f-_

by:

is the variable in the cumulative standard normal distribution

The corresDondin_ threshold is given

3-14-JJ , G (6)

P

is the mean of Class 1 and is the standard deviation of Class

The above equations, although strictly valid only for the case of Gaussian

data, may be expected to give a good approximation even in the case where

the data is not Gaussian, when the data space is relatively large. Experience

with the utilization of these equations in a large number of real problems has

verified that they do provide a good guidance for the selection of both the
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Fisher weighting parameter and the best thres.hold to achieve either the

goal of minimum errors or a predefined false alarm rate.

3.0 PERFORMANCE MEASURES

The simplest measure of the performance of a linear classification algo-

rithm is to examine the projection values actually obtained on the learning

and/or test data b_r applications of the discriminant. The ADAPT programs

present a bar chart plot of these projection values for each of the learning

cases, which can be used to visualize the performance of an algorithm on

the learning data. However, these plots are extremely inconvenient for

evaluating a large number of algorithms. Although the information required

to determine the trade-off between detection probability and false alarm rate

is on these bar charts, they are not very convenient for visualizing this trade-

off. The most desirable way to evaluate the performance of a large number

of algorithms is to obtain a single number which measures the quality of the

algorithm. Since the Fisher discriminant is the result of a maximization of

the quantity V, which can be defined by

(7}

it is clear that the maximum value of V is itself a good measure of the per-

formanc_ of the algorithm. Themaximum value of V, over all possible pro-

jections, turns out to occur when the denominator of Equation 7 is equal to
i

the square roo, t of the numerator, which means V becomes, geometrically,
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the distance between the means of the projection of the two classes on

the Fisher direction. Thus for the Fisher discriminant Equation 7 provides

a relationship between the projection of the means of the two classes, the

standard deviation of each class, and the Fisher weighting parameter.

It is inte resting to consider the special case in which the standard deviation

of each of the classes is equal. For this case,

Xj "- ]) _ "" .J" '_

and

(8)

(9)

Thus the special case of equal standard deviations allows us to get a good

nhvsical eomr}rehension of the _}arameter _]'_'_ This narameter is nsed

as a measure of the goodness of performance of the discriminant. Regardless

of the relationship between the standard deviations of the two classes, the

smatter this parameter (the larger V) the better the performance of the algo-

rithm. In the particular case. where the standard deviations of both classes

are equal this parameter is just equal to the sum of the standard deviations'

divided by the distance between the mean. The resulting simplification is very

instructive for both methods of setting the threshold.

For the case where one wishes to minimize the number of errors, the situation

is shown in Figure _-1. The threshold is set half way between the mean pro-

jections of the two classes, because the criterion requires that the errors for

c-8
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the two classes are the same.

Area A t

on_A l ,

this is

Then the probability of error is the shaded

which is the value of the cumulative .normal distribution centered

up to ]/_ -V/2. If O is the standard cumulative normal distribution,

(10)

PE is the probability of making an, error in either class, and

PD = 1 - PE
(II)

is the probability of correctly identifying a member of either class.

For the case where one wishes the maximum detection of Class 2 for a

I

PFA of Class I, the threshold is set by Equationspecified probabilityerror

6. Again, for equal standard deviations the sit'ration is quite simple. Take

the zero of projections half way between the mean projections of the two

classes. Then }l 1 = V/Z, and Equation 6 becomes

TH = + V/2 - (IZ)

Or o

I
[_ = (V/2 - TH) /_'- (13)

This is

II

The detection probability PD

the standard normal deviate at which

I I)
= G( _PFA

o£ Class 2 is the area under the normal

(14)
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curve centered on J.,!=.=-V/2 up to TH. The normal deviate for this curve

at that point is

and

= (TH + V/2)

PIID = G ( i:_If)

(15)

(16)

But TH can be eliminated from (13) and (15) to give

(17)

Thus for the case of equal standard deviations, the detection probability

of Class II depends only on the false alarm probability of Class I, and the

Fisher maximum through 2/V. Figure C-_presents these ROC curves

for various values of parameter 2/ . Thus we see that the parameter Z/< V

is useful for both visualizing the bar charts of the performance of the algo-

rit}_m as well as for visualizing a Receiver Operating Characteristic for this

particular algorithm. It therefore has considerable intuitive value for rapidly

judging the performance of the classification algorithm. For these reason.s

it is used in ADAPT as the parameter for evaluating the performance of the

ADAPT derived Fisher discriminant. In addition to obtaining an understanding

of the trade-off between detection probability and false alarm rate, it is

important to have a measure of algorithm performance to evaluate the effect

of dimensionality of the space in which the algorithm is derived. This is

extremely important since the use of too large a dimensionality in the derivation

of an algorithm will result in the algorithm being derived by fitting the learning
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data according to special characteristics of the particular learning sample,

and not according to characteristics of the population sample. Tha_ is,

the major basis for the separation will be the difference between the popula-

tion and sample means, rather than the difference between the means of the

two populations being classified. This phenomena is quite an analogous to

the fitting of a third order polynomial through a set of data. If a third order

polynomial is fit to 3 data points, there is no reason to believe that a general

law has been derived. However, if this same third order polynomial makes

a reasonably good fit to 100 points, there is little doubt that these 100

points are related by some phenomena which is well expressed by a third

order polynomial.

Thus, it is important to understand the capabilities of a Fisher discriminant

to derive classification algorithms simply on the difference between sample

and population means. In many years of ADAPT experience, this was evaluated

byperforming separations of odd cases versus even cases from both classes

for each problem being considered. The performance of these separations

were then compared with the performance of the classification algorithm de-
B

rived between the desired classes. If the algorithm derived for separating

the odd versus even gave a similar performance to the desired algorithm then

one concluded that the algorithm was not based on physical characteristics but

rather on the differences between the sample and the population means. This

experience can be summarized in a plot such as presented in Figure C_-3.

This figure plots the number of cases divided by the number of dimensions

versus the performance measure obtained for separations of odd from even
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{i.e. random separations) for a large variety of problems and data. The

extrapolation of th_s curve for low valaes of the performance measure was

accomplished by making a similar plot on a linear scale and noting that for

a number of cases over number of dimensions of unity the performance

memsure should to go 0. It is interesting to compare Figure_-3 with the

results of a similar analysis presented in Reference Z indicated that when

a number of cases to number of dimensions exceeded six, one could have

confidence in the performance of the algorithm_, Figure _"'3clearly shows

why this is the case. Remembering that we may relate Z/_'_ to the proba-

bility of error we note that for a performance measure of 2 the probability

of error is approximately one in three. Since a random process for selecting

a class has a probability of error of one in two, it is clear that an algorithm

whose performance measure is two or greate1" is probably not of very great

interest. Thus this curve shows that any algorithm of interest derived in a

space such that the number of cases divided by the number of dimensions is

greater than six lies to the left of all of the data shown in this figure.

A performance map can be defined which combines all of the characteristics

of this performance measure into a single plot. Figure _-4 presents a sample

of such a plot _. The ordinate of this plot is the ratio of the number of cases

to number of dimensions used to derive the algorithm_ The abscissa is either

the performance measure or the probability of error depending which scale

we wish to read. Thus when an algorithm is derived using the Fisher discrirn-

inant it may be placed at some poi_t in this figure simply by noting the number

C-IZ
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of cases used in the learning data, the number of dimensions of the space

in which the algorithm is derived, and the performance measure for that

algorithm. All of these parameters are available in the ADAPT output for

the deviation of the Fisher discrirninant,

of the cross-hatched region in this figure,

If the algorithm occurs to the right

one knows that it cannot be

applied to test data and is not a general algorithm. If it falls near but

to the left of the cross-hatched area, one realizes that the performance

of this algorithm on the learning data is signifi=antly better than one can

expect on tlae test data. Only if the algorithm falls to the left of and reasonably

far away from th's cross-hatched area does one have an algorithm whose

learning data performance is indicative of the performance which can be

expected on a test case.
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APPENDIX D

PROCEDURE FOR IMPLEMENTING VALIDITY CRITERIA

The validity criteria is that the value of Q K must exceed QK-Min. where

w

7"

(I)

and

_- (W_o,-_' V_._
(z)

QK-Min. is determined by analysis of the learning and/or proof test data. The

VIK are the components of the test case being evaluated and the Vector- _ are

given in Table D-I for the universal boiler #I detection algorithm.

D-I
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APPENDIX E

EQUATIONS FOR UPDATING THE FISHER DISCRIMINANT

Desired Algorithm:

c T

W,, - ,_i _,_ _" C (:)

L.

To update algorithm, desire to use new learning histories, _,
_o_u_e A_-

k.

Step l: Transform Learning Data, V',/_ _ , to optimum space

, to

(2)

Step 2:

Where :

= Components of learning history "K" in

optimum space

= Transformation matrix derived by ADAPT

representation programs and supplied by

Avco on "H-Tape"

.__ = 1,2, ...... No. of Meas. used

= 1, 2 ....... Dimensionality of Optimum Space

= 1, z ....... No. of Learning Cases

Derivation of Fisher Discriminant, A_ , in optimum space

e_ -I E_d_;_ ¢1. ,,_A._ _ [::).e_ - w_

cl BCl.

-_ = Input = Fisher Weight Parameter

E-1



p ,
_/il i

L_

¥, Lc_ C_.

Note:

LQ
YJ, 

#

= VAR-COVAR Matrix of Class j in optimum

Space!

= _2,_, Assigned to Class j

=1, Z

: No. of cases in class j

.T.t< _(a

Note: K : (1 for j = 1
o _M1 + 1 for J = Z

Step 3: Transform Fisher Disc riminant back to data space:

Step 4: Find C = -TH ..... Where

TH = Fisher Threshold Determined as Described in Section Z of

Appendix C

E-Z
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